Algorithms and Programs of Dynamic Mixture Estimation

Unified Approach to Different Types of Components
 
 
Springer (Verlag)
  • erschienen am 14. August 2017
  • |
  • XI, 113 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-64671-8 (ISBN)
 
This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms.
1st ed. 2017
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 27
  • |
  • 27 farbige Abbildungen, 27 farbige Tabellen
  • |
  • 27 farbige Abbildungen, 27 farbige Tabellen, Bibliographie
  • 4,18 MB
978-3-319-64671-8 (9783319646718)
10.1007/978-3-319-64671-8
weitere Ausgaben werden ermittelt
Doc. Ing. Ivan Nagy, CSc. (Ph.D.), born 1956 in Prague, Czech Republic, received his CSc. (Ph.D.) in cybernetics from UTIA, Prague in 1983. In 1980, he started working as a researcher at the Institute of Information Theory and Automation of the Czech Academy of Sciences. Since 1998, he has also been a lecturer at the Czech Technical University Faculty of Transportation Sciences in Prague.

Ing. Evgenia Suzdaleva, CSc. (Ph.D.), born 1977 in Krasnoyarsk, Russia, obtained her CSc. (Ph.D.) in 2002 in system analysis at the Siberian State Aerospace University, Krasnoyarsk, Russia. Since 2004, she has been a researcher at the Institute of Information Theory and Automation at the Czech Academy of Sciences. At the same time, she works as a lecturer at the Czech Technical University Faculty of Transportation Sciences in Prague.
1 Introduction 71.1 On dynamic mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.2 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Basic Models 132.1 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Point estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Categorical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.2 Point estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3.1 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Statistical Analysis of Dynamic Mixtures 213.1 Dynamic mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2 Unified approach to mixture estimation . . . . . . . . . . . . . . . . . . . . . . . 223.2.1 The component part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2.2 The pointer part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3 Main subtasks of mixture estimation . . . . . . . . . . . . . . . . . . . . . 233.2.4 General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3 Mixture prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3.1 Pointer prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3.2 Data prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Dynamic Mixture Estimation 294.1 Normal regression components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.1.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.2 Categorical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.2.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.3 State-space components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.3.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Program Codes 435.1 Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.2 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2.1 Initialization of estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2.2 Computation of proximities . . . . . . . . . . . . . . . . . . . . . . . . . . 495.2.3 Update of component statistics . . . . . . . . . . . . . . . . . . . . . . . . 525.3 Collection of programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 Experiments 556.1 Mixture with regression components . . . . . . . . . . . . . . . . . . . . . . . . . 566.1.1 Well separated components . . . . . . . . . . . . . . . . . . . . . . . . . . 576.1.2 Weak components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646.1.3 Reduced number of components . . . . . . . . . . . . . . . . . . . . . . . 646.1.4 High dimensional output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<6.1.5 Big noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656.2 Mixture with categorical components . . . . . . . . . . . . . . . . . . . . . . . . . 696.3 Mixture with state-space components . . . . . . . . . . . . . . . . . . . . . . . . . 756.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.4.1 Static normal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.4.2 Dynamic normal components . . . . . . . . . . . . . . . . . . . . . . . . . 807 Appendix A (supporting notions) 877.1 Useful matrix formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.2 Matrix trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.3 Dirac and Kronecker functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887.4 Gamma and beta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897.5 The Bayes rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.6 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.7 The natural conditions of control . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.8 Conjugate Dirichlet distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.8.1 The normalization constant of Dirichlet distribution . . . . . . . . . . . . 927.8.2 Statistics update with the conjugate Dirichlet distribution . . . . . . . . . 927.8.3 The parameter point estimate of the categorical model . . . . . . . . . . . 937.8.4 Data prediction with Dirichlet distribution . . . . . . . . . . . . . . . . . 947.9 Conjugate Gauss-inverse-Wishart distribution . . . . . . . . . . . . . . . . . . . 947.9.1 Statistics update for the normal regression model . . . . . . . . . . . . . . 947.9.2 The parameter point estimate of the regression model . . . . . . . . . . . 957.9.3 The proximity evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 968 Appendix B (supporting programs) 978.1 Simulation programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978.1.1 The simulation of pointer values . . . . . . . . . . . . . . . . . . . . . . . 978.1.2 The simulation of mixture with regression components . . . . . . . . . . . 988.1.3 The simulation of mixture with discrete components . . . . . . . . . . . . 998.1.4 The simulation of mixture with state-space components . . . . . . . . . . 1018.2 Supporting subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038.2.1 Scilab start settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038.2.2 The point estimation of a normal regression model . . . . . . . . . . . . . 1038.2.3 The value of a normal multivariate distribution . . . . . . . . . . . . . . . 1048.2.4 Discrete regression vector coding . . . . . . . . . . . . . . . . . . . . . . . 1058.2.5 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2.6 Matrix upper-lower factorization . . . . . . . . . . . . . . . . . . . . . . . 1078.2.7 Transition table normalization . . . . . . . . . . . . . . . . . . . . . . . . 1088.2.8 The approximation of normal pdfs by a single pdf . . . . . . . . . . . . . 108
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

58,84 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

58,84 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen