|
Get up and running with machine learning with F# in a fun and functional wayAbout This BookDesign algorithms in F# to tackle complex computing problemsBe a proficient F# data scientist using this simple-to-follow guideSolve real-world, data-related problems with robust statistical models, built for a range of datasetsWho This Book Is ForIf you are a C# or an F# developer who now wants to explore the area of machine learning, then this book is for you. Familiarity with theoretical concepts and notation of mathematics and statistics would be an added advantage.What You Will LearnUse F# to find patterns through raw dataBuild a set of classification systems using Accord.NET, Weka, and F#Run machine learning jobs on the Cloud with MBracePerform mathematical operations on matrices and vectors using Math.NETUse a recommender system for your own problem domainIdentify tourist spots across the globe using inputs from the user with decision tree algorithmsIn DetailThe F# functional programming language enables developers to write simple code to solve complex problems. With F#, developers create consistent and predictable programs that are easier to test and reuse, simpler to parallelize, and are less prone to bugs.If you want to learn how to use F# to build machine learning systems, then this is the book you want.Starting with an introduction to the several categories on machine learning, you will quickly learn to implement time-tested, supervised learning algorithms. You will gradually move on to solving problems on predicting housing pricing using Regression Analysis. You will then learn to use Accord.NET to implement SVM techniques and clustering. You will also learn to build a recommender system for your e-commerce site from scratch. Finally, you will dive into advanced topics such as implementing neural network algorithms while performing sentiment analysis on your data.Style and approachThis book is a fast-paced tutorial guide that uses hands-on examples to explain real-world applications of machine learning. Using practical examples, the book will explore several machine learning techniques and also describe how you can use F# to build machine learning systems.
Reihe: |
|
Sprache: |
|
Verlagsort: |
-
Birmingham
- |
-
Großbritannien
|
Dateigröße: |
|
ISBN-13: |
978-1-78398-935-5 (9781783989355) |
ISBN-10: |
1783989351 (1783989351) |
weitere Ausgaben werden ermittelt
Sudipta Mukherjee was born in Kolkata and migrated to Bangalore. He is an electronics engineer by education and a computer engineer/scientist by profession and passion. He graduated in 2004 with a degree in electronics and communication engineering. He has a keen interest in data structure, algorithms, text processing, natural language processing tools development, programming languages, and machine learning at large. His first book on Data Structure using C has been received quite well. Parts of the book can be read on Google Books at http://goo.gl/pttSh. The book was also translated into simplified Chinese, available from Amazon.cn at http://goo.gl/lc536. This is Sudipta's second book with Packt Publishing. His first book, .NET 4.0 Generics (http://goo.gl/MN18ce), was also received very well. During the last few years, he has been hooked to the functional programming style. His book on functional programming, Thinking in LINQ (http://goo.gl/hm0lNF), was released last year. Last year, he also gave a talk at @FuConf based on his LINQ book (https://goo.gl/umdxIX). He lives in Bangalore with his wife and son. Sudipta can be reached via e-mail at sudipto80@yahoo.com and via Twitter at @samthecoder.
Schweitzer Klassifikation
Dewey Decimal Classfication (DDC)
Warengruppensystematik 2.0
Dateiformat: EPUB Kopierschutz: Adobe-DRM (Digital Rights Management) Systemvoraussetzungen:
-
•
-
Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
-
•
-
Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).
-
•
-
E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)
Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Dateiformat: PDF Kopierschutz: Adobe-DRM (Digital Rights Management) Systemvoraussetzungen:
-
•
-
Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
-
•
-
Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).
-
•
-
E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
|