Red Wine Technology

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 29. Oktober 2018
  • |
  • 408 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-814400-8 (ISBN)
 

Red Wine Technology is a solutions-based approach on the challenges associated with red wine production. It focuses on the technology and biotechnology of red wines, and is ideal for anyone who needs a quick reference on novel ways to increase and improve overall red wine production and innovation. The book provides emerging trends in modern enology, including molecular tools for wine quality and analysis. It includes sections on new ways of maceration extraction, alternative microorganisms for alcoholic fermentation, and malolactic fermentation. Recent studies and technological advancements to improve grape maturity and production are also presented, along with tactics to control PH level.

This book is an essential resource for wine producers, researchers, practitioners, technologists and students.

  • Provides innovative technologies to improve maceration and color/tannin extraction, which influences color stability due to the formation of pyranoanthocyanins and polymeric pigments
  • Contains deep evaluations of barrel ageing as well as new alternatives such as microoxigenation, chips, and biological ageing on lees
  • Explores emerging biotechnologies for red wine fermentation including the use of non-Saccharomyces yeasts and yeast-bacteria coinoculations, which have effects in wine aroma and sensory quality, and also control spoilage microorganisms
  • Englisch
  • San Diego
  • |
  • USA
  • 12,82 MB
978-0-12-814400-8 (9780128144008)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Red Wine Technology
  • Copyright Page
  • Contents
  • List of Contributors
  • Prologue
  • 1 Grape Maturity and Selection: Automatic Grape Selection
  • 1.1 Physicochemical Characteristics of Enological Interest
  • 1.2 Vineyard Approaches to Grape Selection and Harvest Date Determination
  • 1.2.1 Spatial Variability in Vineyard and Precision Viticulture Tools
  • 1.2.2 Grape Harvest and Selection in Vineyard
  • 1.2.2.1 Manual Grape Selection in Vineyard by Visual Inspection
  • 1.2.2.2 Selective Harvest of Different Parts of the Cluster
  • 1.2.2.3 Selective Harvest Based on Vineyard Area
  • 1.2.2.4 Time-Differential Harvest
  • 1.2.2.5 Toward Automated Grape Cluster Selection and Harvest
  • 1.3 Grape Selection in Winery
  • 1.3.1 Sorting Tables in Winery
  • 1.3.2 Size, Density, and Image Analysis Sorting Equipment
  • 1.3.3 New Perspectives for the Direct Grape Quality Evaluation and Selection in Winery
  • References
  • 2 Acidification and pH Control in Red Wines
  • 2.1 Importance of Acidic Fraction and pH Control in Red Wines
  • 2.2 Main Organic Acids in Must and Wine
  • 2.2.1 Tartaric Acid
  • 2.2.2 Malic Acid
  • 2.2.3 Citric Acid
  • 2.2.4 Lactic Acid
  • 2.2.5 Succinic Acid
  • 2.2.6 Acetic Acid
  • 2.3 Total Acidity and Wine pH
  • 2.3.1 Definition of pH
  • 2.3.2 Total Acidity, Titratable Acidity, and Real Acidity
  • 2.3.3 Variations of Acidity During Winemaking
  • 2.4 Acid-Base Equilibrium and Wine Buffer Capacity
  • 2.4.1 Acid-Base Equilibrium in Wine
  • 2.4.2 Buffer Capacity
  • 2.5 Traditional Strategies for Chemical Acidification
  • 2.5.1 Acidification by Blending with Musts or Wines From Low Maturity Grapes
  • 2.5.2 Acidification by Supplementation with Organic Acids
  • 2.6 Traditional Strategies for Chemical Deacidification
  • 2.6.1 Deacidification by Using Processing Aids
  • 2.7 New Technologies for pH Control
  • 2.7.1 Acidification and Deacidification by Electromembrane Techniques
  • 2.7.2 Ion Exchange Resins
  • 2.8 Laboratory Techniques for Measuring pH and Acidic Fraction
  • Acknowledgments
  • References
  • 3 Maceration and Fermentation: New Technologies to Increase Extraction
  • 3.1 Introduction
  • 3.2 Tank Design for Red Winemaking
  • 3.3 Vessel Materials in Red Winemaking
  • 3.4 Kinetics of Extraction: The Effect of Temperature
  • 3.5 Mechanical Processes During Maceration
  • 3.5.1 Punch Downs and Pump Overs
  • 3.5.2 Rack and Return
  • 3.5.3 Submerged Cap
  • 3.5.4 Extended Maceration
  • 3.6 New Extraction Technologies
  • 3.6.1 High Hydrostatic Pressure
  • 3.6.2 Pulsed Electric Fields
  • 3.6.3 Ultrasounds
  • 3.6.4 Irradiation
  • 3.6.5 Pulsed Light
  • 3.6.6 Ozone and Electrolyzed Water
  • 3.7 Conclusions
  • References
  • 4 Use of Non-Saccharomyces Yeasts in Red Winemaking
  • 4.1 Introduction
  • 4.2 Yeast Ecology of Grape Berry
  • 4.3 Controlled Fermentation: The Role of Saccharomyces cerevisiae
  • 4.4 Non-Saccharomyces Yeasts Features in Red Wine
  • 4.4.1 The Enzymatic Activities
  • 4.4.2 The Influence on the Aroma Profile
  • 4.4.3 The Polysaccharides Production and Color Stability
  • 4.4.4 Acidification and Deacidification Activities
  • 4.4.5 Reduction of Ethanol Content
  • 4.4.6 Antimicrobial Activities
  • References
  • 5 Yeast Biotechnology for Red Winemaking
  • 5.1 Introduction
  • 5.2 Yeast Diversity in Red Grapes and Musts
  • 5.3 Influence of Red Wine Technology on Saccharomyces Strains
  • 5.3.1 Saccharomyces Strains Dominate in the Wine Ecosystem
  • Saccharomyces Specific Niche
  • 5.3.2 Nitrogen Competition During Winemaking
  • 5.3.3 Redox and Temperature Effects in Red Winemaking
  • 5.3.4 Alcohol and Polyphenol Contents in Red Winemaking
  • 5.3.5 Saccharomyces cerevisiae and Red Wine Color
  • 5.3.6 Cell Wall Adsorption and Cell Lysis Effects on Anthocyanins
  • 5.3.6.1 Cell Wall Anthocyanins Adsorption
  • 5.3.6.2 ß-Glycosidase Activity
  • 5.3.6.3 Polysaccharide Release
  • 5.3.7 Formation of Derived Anthocyanin Compounds by Yeast Fermentation Improves Color
  • 5.4 Saccharomyces Cerevisiae and Flavor Compounds
  • 5.4.1 Saccharomyces cerevisiae Synthesis of Flavor Compounds
  • 5.4.2 Saccharomyces Enzymes Effects on Flavor
  • 5.5 Practical Red Winemaking and Yeast Performance
  • 5.5.1 Use of Commercial Yeasts
  • 5.5.2 Saccharomyces-Lactic Acid Bacteria Interactions During Winemaking
  • 5.5.3 Aging and Microbial Stability
  • Acknowledgments
  • References
  • Further Reading
  • 6 Malolactic Fermentation
  • 6.1 Introduction
  • 6.2 Lactic Acid Bacteria in Winemaking
  • 6.2.1 Oenococcus oeni
  • 6.2.2 Lactobacillus sp.
  • 6.2.3 Pediococcus sp.
  • 6.3 Factors Impacting LAB at Winery
  • 6.3.1 Ethanol
  • 6.3.2 pH
  • 6.3.3 Sulfur Dioxide
  • 6.3.4 Temperature
  • 6.4 Technological Strategies for Managing the MLF Performance
  • 6.5 Impact of MLF on Wine Organoleptic Properties
  • 6.5.1 Carbonyl Compounds
  • 6.5.2 Esters
  • 6.5.3 Monoterpenes
  • 6.6 Production of Off-Flavors by Lactic Acid Bacteria
  • 6.6.1 Volatile Sulfur Compounds
  • 6.7 Implications of LAB and MLF in Wine Safety
  • 6.7.1 Biogenic Amines
  • 6.7.2 Ethyl Carbamate
  • 6.8 Conclusion
  • Acknowledgments
  • References
  • 7 Yeast-Bacteria Coinoculation
  • 7.1 Introduction
  • 7.2 Objectives
  • 7.2.1 Controlling Wine Acidity
  • 7.2.2 Reducing Ethanol Yields and Volatile Acidity
  • 7.2.3 Controlling Microbial Spoilage
  • 7.2.4 Reducing Wine Toxins: Ochratoxin, Biogenic Amines, Ethyl Carbamate
  • 7.2.5 Modification of the Organoleptic Characteristics
  • 7.3 Interactions Between Wine Microorganisms
  • Acknowledgments
  • References
  • 8 Molecular Tools to Analyze Microbial Populations in Red Wines
  • 8.1 Introduction
  • 8.2 Classical and Phenotypic Methods
  • 8.3 DNA-Based Methods
  • 8.3.1 Randomly Amplified Polymorphic DNA PCR Fingerprints (RAPD-PCR)
  • 8.3.2 PCR-Restriction Fragment Length Polymorphism
  • 8.3.3 Terminal Restriction Fragment Length Polymorphism
  • 8.3.4 Gradient Gel Electrophoresis
  • 8.3.5 Quantitative Real-Time PCR (QPCR) and Reverse Transcription Quantitative Real-Time PCR (RT-qPCR)
  • 8.3.6 Capillary Electrophoresis Single-Strand Conformation Polymorphism
  • 8.3.7 Automated Ribosomal Intergenic Spacer Analysis
  • 8.3.8 Next Generation Sequencing
  • 8.4 Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry
  • 8.5 Microbial Diversity Assessment Through Enzymes Detection
  • 8.6 Culture-Dependent Versus Culture-Independent Methods
  • 8.7 Conclusions
  • References
  • Further Reading
  • 9 Barrel Aging
  • Types of Wood
  • 9.1 Brief Historical Introduction
  • 9.2 The Main Tree Species Used in Cooperage
  • 9.3 The Main Forests Providing Wood For Cooperage
  • 9.4 The Concept of Wood Grain in Cooperage
  • 9.5 Obtaining the Staves: Hand Splitting and Sawing
  • 9.6 Drying Systems: Natural Seasoning and Artificial Drying
  • 9.7 Assembly and Toasting of the Barrel
  • 9.8 Types of Barrels and Barrel Parts
  • 9.9 What Happens to a Wine During Barrel Aging
  • 9.10 Volatile Substances Released by Oak Wood During Barrel Aging
  • 9.11 Phenolic Compounds Released by Oak Wood During Barrel Aging
  • 9.12 Oxygen Permeability of Oak Wood
  • 9.13 Influence of Wood Grain
  • 9.14 Influence of Botanical and Geographic Origin
  • 9.15 Influence of Natural Seasoning and Artificial Drying
  • 9.16 Influence of Toasting Level
  • 9.17 Influence of the Repeated Use of Barrels
  • 9.18 Barrel Aging Process
  • Acknowledgments
  • References
  • Further Reading
  • 10 Emerging Technologies for Aging Wines: Use of Chips and Micro-Oxygenation
  • 10.1 Why Aging Wines in Barrels?
  • 10.2 The Micro-Oxygenation Technique
  • 10.3 Positive Factors of Using Micro-Oxygenation
  • 10.3.1 Incidence on Yeast Development During Alcoholic Fermentation
  • 10.3.2 Wine Chromatic Characteristics and Stability
  • 10.3.3 Improvement of Astringency and Mouthfeel
  • 10.3.4 Improvement of Wine Aroma and Reduction of Vegetal Characteristics
  • 10.4 The Application of the MOX Technique
  • 10.5 The Use of Oak Chips
  • 10.6 When and How Use Them
  • 10.7 Effect of Adding Oak Chips on Wine Characteristics
  • 10.8 Comparing the Effect of Chips or MOX With Aging Wine in Barrels
  • 10.9 The Combined Used of MOX+CHIPS
  • 10.10 Innovations in MOX and Chips Application
  • 10.10.1 Innovations in MOX
  • 10.10.2 Innovations in the Treatment With Chips
  • References
  • Further Reading
  • 11 New Trends in Aging on Lees
  • 11.1 Introduction
  • 11.2 Use of Non-Saccharomyces Yeasts
  • 11.3 Accelerated Aging on Lees
  • 11.4 Lees Aromatization
  • 11.5 Conclusions
  • References
  • Further Reading
  • 12 Evolution of Proanthocyanidins During Grape Maturation, Winemaking, and Aging Process of Red Wines
  • 12.1 Proanthocyanidins: Composition, Content, and Evolution During Grape Maturation
  • 12.1.1 General Composition and Content of Proanthocyanidins in Grapes
  • 12.1.2 Evolution of Proanthocyanidins During Grape Maturation
  • 12.2 Evolution of Proanthocyanidins During Fermentative Maceration of Red Wines
  • 12.3 Changes on Proanthocyanidins During Red Wine Aging in Contact with Wood
  • 12.3.1 Natural Evolution of the Proanthocyanidins During Aging
  • 12.3.2 Effects of the Medium Factors on the Proanthocyanidin Evolution
  • 12.3.3 Wood Influence on Wine Proanthocyanidin Evolution
  • 12.4 Final Remarks
  • References
  • 13 Wine Color Evolution and Stability
  • 13.1 Introduction
  • 13.2 Anthocyanin Stability
  • 13.2.1 Chemical Structure of Anthocyanins
  • 13.2.2 Effect of pH
  • 13.2.3 Effect of the Temperature
  • 13.2.4 Effect of the Bisulfite
  • 13.2.5 Effect of Oxygen
  • 13.3 Copigmentation
  • 13.3.1 Factors Affecting Copigmentation
  • 13.4 Red Wine Color Evolution
  • 13.4.1 Anthocyanin Oxidation
  • 13.4.2 Formation of Anthocyanin Derivative Pigments
  • 13.4.2.1 Flavanol-Anthocyanin Condensation Products
  • 13.4.2.2 Pyranoanthocyanins
  • 13.5 Winemaking Practices for Stabilizing Red Wine Color
  • 13.5.1 Technological Tools to Enhance Copigmentation in Wines
  • 13.5.2 Effect of Polysaccharide-Anthocyanin Interaction
  • 13.5.2.1 Grape Skin Polysaccharides
  • 13.5.2.2 Yeast Mannoproteins
  • Acknowledgments
  • References
  • Further Reading
  • 14 Polymeric Pigments in Red Wines
  • Abbreviations
  • 14.1 Introduction
  • 14.2 Polymeric Pigments in Red Wines
  • 14.2.1 Anthocyanin-Derived Pigments Found in Red Grapes and Wines
  • 14.2.2 Anthocyanin-Derived Pigments Formed in Red Wines During Aging
  • 14.2.3 A-Type Vitisin-Derived Pigments Formed in Red Wines During Aging
  • 14.3 Analysis of Polymeric Pigments
  • 14.4 Stability in Solution and Influence in Red Wine Color
  • 14.5 Conclusion
  • References
  • 15 Spoilage Yeasts in Red Wines
  • 15.1 Introduction
  • 15.1.1 Concept of Spoilage Yeasts
  • 15.1.2 Significance and Occurrence of Wine-Related Yeast Species
  • 15.1.2.1 Grapes and Grape Juices
  • 15.1.2.2 Wine Fermentation
  • 15.1.2.3 Bulk and Bottled Wine
  • 15.1.3 Factors Promoting the Dissemination of Spoilage Yeasts
  • 15.2 Description of the Main Yeast Genera/Species Involved in Wine Spoilage
  • 15.2.1 Film-Forming Species
  • 15.2.2 Zygosaccharomyces bailii and Related Species
  • 15.2.3 Saccharomyces cerevisiae and Related Species
  • 15.2.4 Saccharomycodes ludwigii and Schizosaccharomyces pombe
  • 15.2.5 Dekkera/Brettanomyces bruxellensis
  • 15.3 Yeast Monitoring
  • 15.3.1 Microbiological Control
  • 15.3.1.1 Grape and Grape Juice Monitoring
  • 15.3.1.2 Bulk Wine Monitoring
  • 15.3.1.3 The Peculiar Case of D. bruxellensis
  • 15.3.1.4 Wine Bottling
  • 15.3.2 Tools Used in Microbiological Control in the Wineries
  • 15.3.3 Acceptable Levels of Yeasts
  • 15.4 Control of Yeast Populations in Wines
  • 15.4.1 Hygiene
  • 15.4.2 Clarification, Fining, and Filtration
  • 15.4.3 Oxygen and Storage Temperature
  • 15.4.4 Chemical Preservatives
  • 15.4.5 Thermal Treatments
  • 15.5 Future Trends
  • References
  • 16 Red Wine Clarification and Stabilization
  • 16.1 Colloids and Colloidal Instabilities in Red Wines
  • 16.1.1 Colloids and Colloidal Interactions
  • 16.1.2 Colloidal Instabilities in Red Wines and Their Prevention
  • 16.2 Wine Clarification
  • 16.2.1 Clarification by Settling, With or Without Fining Aids
  • 16.2.2 Centrifugation and Wine Clarification
  • 16.2.3 Filtration
  • 16.2.3.1 Dead-End Filtration
  • 16.2.3.2 Cross-Flow Microfiltration
  • 16.2.3.3 Filtration and Microbial Stabilization of Wines
  • 16.3 Stabilization With Regards to the Crystallization of Tartaric Salts
  • 16.3.1 Mechanisms and Stability Assessment
  • 16.3.2 Stabilization Technologies
  • 16.3.2.1 Cold Stabilization
  • 16.3.2.2 Electrodialysis
  • 16.3.2.3 Additives
  • 16.4 Microbiological Stabilization
  • 16.5 Conclusion
  • References
  • 17 Sensory Analysis of Red Wines for Winemaking Purposes
  • 17.1 Tasting of Grapes
  • 17.1.1 Field Sampling
  • 17.1.2 Grape Tasting
  • 17.2 Tasting in the Production of Red Wine
  • 17.3 Tasting During Malolactic Fermentation
  • 17.4 Conclusions
  • 18 Management of Astringency in Red Wines
  • 18.1 Introduction
  • 18.2 Astringency in Wines
  • 18.2.1 Mechanisms of Astringency
  • 18.2.1.1 Salivary Proteins
  • 18.2.1.2 Phenolic Compounds
  • 18.2.1.2.1 Proanthocyanidins
  • 18.2.2 Methods for Astringency Analysis
  • 18.3 Influence of Winemaking Technology in Wine Astringency
  • 18.3.1 Grape Ripening
  • 18.3.2 Maceration and Fermentation
  • 18.4 Future Outlook
  • References
  • Further Reading
  • 19 Aromatic Compounds in Red Varieties
  • 19.1 Introduction
  • 19.2 Selection of Aromatic Compounds With Distinct Impact
  • 19.2.1 Sulfur Compounds
  • 19.2.1.1 Dimethyl Sulfide
  • 19.2.1.2 Thiols
  • 19.2.1.3 Methoxypyrazines
  • 19.2.1.4 Sesquiterpene-(-)-Rotundone
  • 19.2.1.5 C13-Norisoprenoides
  • 19.2.1.6 Esters
  • 19.2.1.7 Miscellaneous Aroma Compounds
  • 19.3 Conclusion
  • References
  • 20 The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines
  • 20.1 Introduction
  • 20.2 Analytes and an Analytical Classification
  • 20.3 The Analysis of "Easy" Aroma Compounds
  • 20.4 The Specific Analysis of Volatile Phenols
  • 20.5 The Analysis of "Difficult" Aroma Compounds in Red Wine
  • 20.5.1 Acetaldehyde and Sulfur Dioxide
  • 20.5.2 Volatile Sulfur Compounds
  • 20.5.3 Strecker Aldehydes and Other Odor-Active Aldehydes
  • 20.5.4 Highly Polar Compounds
  • 20.5.5 Polyfunctional Mercaptans
  • 20.5.6 Alkylmethoxypyrazines
  • 20.5.7 Other Compounds
  • 20.6 Final Considerations
  • References
  • 21 SO2 in Wines: Rational Use and Possible Alternatives
  • 21.1 Sulfur Dioxide: Use in the Winemaking Process and Legal Limits
  • 21.2 Different Forms to Use SO2
  • 21.3 SO2 Action Mechanisms
  • 21.4 SO2 Replacement Products for Red Wine Production
  • 21.4.1 Antimicrobial Activity Substitutes
  • 21.4.2 Antioxidant Activity Substitutes
  • 21.4.3 Considerations on SO2 Replacement Additives
  • References
  • 22 Red Wine Bottling and Packaging
  • 22.1 Glass Bottles
  • 22.1.1 History and Developments
  • 22.2 Targets Today
  • 22.2.1 Traditional Fashioned Red Wines Ripening in the Bottle
  • 22.2.2 Modern Ready to Drink Wines and Shelf Life
  • 22.3 Bottling Lines
  • 22.4 Hazards in Bottling Red Wine
  • 22.4.1 Microbiology
  • 22.4.2 Chemical Contaminations
  • 22.4.3 Physical Contamination
  • 22.4.4 Avoidance of Oxygen With Filling Technology
  • 22.4.5 Adjusting the Filling Level
  • 22.4.6 Filling Speed
  • 22.4.7 Automation Standards Mechanic Fillers-Electronic Fillers
  • 22.4.8 Packaging Materials
  • 22.4.9 Glass Bottles
  • 22.4.10 PET Bottles
  • 22.4.11 Carton Packaging
  • 22.4.12 Bag in Box
  • 22.5 Closures
  • 22.5.1 Cork
  • 22.5.2 Screw Caps
  • 22.5.3 Vinolok
  • 22.6 Preparing the Wine for Market
  • 22.6.1 Checking the Filling Level
  • 22.6.2 Treatment of the Closed Bottles
  • 22.6.3 Labeling
  • 22.6.4 Paper Labels
  • 22.6.5 Self-Adhesive Labels
  • 22.6.6 Hot Glue Labeling
  • 22.6.7 Sleeves
  • 22.6.8 Alternative Labeling Systems
  • 22.7 Packaging
  • 22.7.1 Boxing and Wrapping Machines for Bottles
  • 22.8 Economy
  • 22.9 Ecology
  • References
  • Further Reading
  • 23 Red Winemaking in Cool Climates
  • 23.1 Introduction
  • 23.1.1 Classifying Cool Climate Regions
  • 23.2 Cool Climate Grape Varieties in the Northern and Southern Hemisphere
  • 23.3 Chemical Composition of Grapes in Cool and Warm Climates
  • 23.3.1 Sugar/Alcohol
  • 23.3.2 Acid
  • 23.3.3 Flavor and Aroma
  • 23.3.4 "Greenness" in Red Wines
  • 23.3.5 Sources of Green Compounds
  • 23.3.6 Preventing Greenness in the Vineyard
  • 23.3.7 Remediating Must and Wine With Elevated MP Levels
  • 23.4 Innovations in Cool Climate Winemaking
  • 23.4.1 Appassimento-Style Red Wines
  • 23.4.2 Red Icewine
  • 23.5 Making Wine From Red Interspecific Hybrid and Fungus-Resistant Varieties
  • 23.5.1 Acidity, pH and Potassium
  • 23.6 Yeast Assimilable Nitrogen
  • 23.7 Tannins and Anthocyanin
  • 23.7.1 Aroma
  • References
  • 24 Red Winemaking in Cold Regions With Short Maturity Periods
  • 24.1 Introduction
  • 24.1.1 Buried Viticulture
  • 24.1.2 Vine Unearthed in Spring
  • 24.1.3 Effect of Buried Viticulture on Vines
  • 24.1.3.1 The Cultivation and Management Technique of Vineyard in Cold Area
  • 24.2 Wintering Adaptability and Cold Resistance of Grape Vine
  • 24.3 Influence of Low Temperature on Different Tissues of Grape Vine
  • 24.3.1 Adaptability of Shoots to Low Temperature
  • 24.3.2 Adaptability of Buds to Low Temperature
  • 24.3.3 Adaptability of Roots to Low Temperature
  • 24.4 Influence of Low Temperature on Grape Cells
  • 24.4.1 Plasma Membrane Permeability
  • 24.4.2 Respiration in Cold Climate
  • 24.5 The Reasons for Freeze Damage
  • 24.5.1 Grape Variety Resistance to Freeze Damage
  • 24.5.2 Humidity
  • 24.5.3 Vine Physiological Limit
  • 24.6 Maturity Analysis
  • 24.7 Anthocyanin Accumulation by Viticulture Process
  • 24.8 Winemaking Technology
  • 24.9 Final Comments
  • References
  • Further Reading
  • Author Index
  • Subject Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

129,71 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen