Extracellular Matrix-derived Implants in Clinical Medicine

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 18. Mai 2016
  • |
  • 202 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100219-3 (ISBN)
 

Extracellular Matrix-Derived Implants in Clinical Medicine comprehensively covers the emergence of tissue engineering and regenerative medicine over the past few decades, along with discussions of continuous funding and research.

The book provides a state-of-the-art review of this increasingly important technology and how it is translating from bench to bedside. Part One of the book looks at the historical use of human and animal tissues, focusing on the main application areas, including cardiovascular, hard and soft tissue engineering, and neurological, while Part Two examines the challenges in harvesting, processing, and manufacturing of extracellular matrices, with a final section reviewing the international regulatory environment and economics of tissue-based products.


  • Addresses issues of tissue engineering and regenerative medicine from a biomaterials industry perspective
  • Looks at the historical use of human and animal tissues, focusing on the main application areas, including cardiovascular, hard and soft tissue engineering, and neurological
  • Examines the challenges in harvesting, processing, and manufacturing of extracellular matrices
  • Reviews the international regulatory environment and economics of tissue-based products
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 6,95 MB
978-0-08-100219-3 (9780081002193)
008100219X (008100219X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Extracellular Matrix-derived Implantsin Clinical Medicine
  • Related titles
  • Extracellular Matrix-derived Implants in Clinical Medicine
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • 1 - Introduction
  • 1.1 Introduction
  • References
  • 2 - Past and present ECM-based vascular biomaterials
  • 2.1 Introduction
  • 2.2 In the beginning
  • 2.3 Biological grafts
  • 2.4 The "ideal" graft
  • 2.5 Future trends
  • References
  • 3 - Next generation ECM-based vascular biomaterials
  • 3.1 ECM-derived biomaterials
  • 3.1.1 Vein
  • 3.1.2 Umbilical vein
  • 3.1.3 Artery
  • 3.1.4 Pericardium
  • 3.1.5 Conventional alternatives
  • 3.2 Patch angioplasty of the carotid artery
  • 3.3 Future trends
  • References
  • 4 - Allografts and xenografts in soft tissue repair: current use and future trends
  • 4.1 Introduction
  • 4.2 Tissue source: physical and biological properties
  • 4.3 The processing of allografts and xenografts
  • 4.3.1 Cleaning
  • 4.3.2 Decellularization
  • 4.3.3 Chemical crosslinking
  • 4.3.4 Other chemical processes
  • 4.3.5 Sterilization
  • 4.4 Current products
  • 4.5 Clinical applications
  • 4.5.1 Neurologic
  • 4.5.2 Chest wall (thoracic)
  • 4.5.3 Cardiac (heart)
  • 4.5.4 Pericardial closure
  • 4.6 Abdominal wall (hernia repair)
  • 4.6.1 Pelvic floor
  • 4.7 Future trends
  • References
  • 5 - Extracellular matrix-derived tissues for hard tissue repair
  • 5.1 Introduction
  • 5.2 ECM-derived tissues for bone repair
  • 5.2.1 Tissue-derived extracellular matrix
  • 5.2.1.1 Demineralized bone matrix (DBM)
  • 5.2.1.2 Decellularized bone graft
  • 5.2.2 Cell-derived extracellular matrix for bone repair
  • 5.3 Extracellular matrix-derived tissues for dental repair
  • 5.3.1 Tissue-derived extracellular matrix
  • 5.3.2 Stem cell-derived extracellular matrix
  • 5.4 Outlook
  • References
  • 6 - Extracellular matrix-derived tissues for neurological applications
  • 6.1 Background
  • 6.1.1 Nervous system anatomy and function
  • 6.1.2 Role of ECM in development
  • 6.1.2.1 Cell migration and process outgrowth
  • 6.1.2.2 Differentiation
  • 6.1.2.3 Synaptic formation
  • 6.1.3 Nervous system regeneration and the role of ECM
  • 6.1.3.1 Central nervous system
  • 6.1.3.2 Peripheral nervous system
  • 6.1.4 Benefits of ECM scaffolds for neurological applications
  • 6.2 Current applications of ECM-derived products in CNS surgery
  • 6.2.1 Dural repair products
  • 6.2.1.1 Adjuncts to dural repair
  • 6.2.2 Hemostatic aids
  • 6.2.2.1 Hemostatic sponge
  • 6.2.2.2 Oxidized regenerated cellulose
  • 6.2.2.3 Particalized hemostatic agents
  • 6.3 Current applications of ECM-derived products in the PNS
  • 6.3.1 ECM-based implants in peripheral nerve surgery
  • 6.3.1.1 Acellular nerve allografts (ANAs)
  • 6.3.1.2 Nerve guidance tubes (NGTs) and wraps
  • 6.4 Future and emerging applications of ECM technology for neurological therapies
  • 6.4.1 Neuroprotective scaffolds
  • 6.4.2 ECM-derived regenerative scaffolds
  • 6.4.2.1 Collagen
  • 6.4.2.2 Fibronectin
  • 6.4.2.3 Hyaluronic acid (HA)
  • 6.4.2.4 Growth factor presentation
  • 6.4.2.5 Cell transplant vehicle
  • 6.4.2.6 Preformed living scaffolds
  • 6.4.2.7 Fabrication of scaffolds containing electrospun nanofibers
  • 6.5 Conclusions
  • References
  • 7 - Sourcing animal and human tissue for implant use
  • 7.1 Introduction
  • 7.1.1 History and evolution of tissue sourcing
  • 7.1.2 Performance and clinical requirements
  • 7.1.3 Cost
  • 7.1.4 Regulatory considerations
  • 7.1.5 Future outlook
  • 7.2 Tissue sourcing
  • 7.2.1 Allograft sourcing
  • 7.2.1.1 Donor and tissue qualification
  • 7.2.1.2 Retrieval of allograft tissue
  • 7.2.1.3 Tissue tracking
  • 7.2.2 Xenograft sourcing
  • 7.2.2.1 Xenograft source qualification
  • 7.2.2.2 Immunological considerations
  • 7.2.2.3 Viral transmission
  • 7.3 Tissue processing, storage and logistics
  • 7.3.1 Manufacturing requirements
  • 7.3.2 Sterilization
  • 7.3.3 Packaging, storage and shelf life
  • 7.4 Regulatory considerations
  • 7.4.1 Human cell and tissue products
  • 7.4.2 Device regulations
  • 7.4.3 Biologics
  • 7.4.4 Quality and compliance
  • 7.4.5 Record keeping
  • 7.4.6 Adverse event reporting
  • 7.5 Future innovation
  • 7.5.1 Processing advances
  • 7.5.2 Cellular-based approaches
  • 7.5.3 Transgenic technology and xenotransplantation
  • References
  • 8 - Xenograft sourcing and manufacturing, challenges, and opportunities
  • 8.1 Introduction
  • 8.2 Sourcing of raw materials
  • 8.3 Manufacturing issues
  • 8.4 Stability batches and stability testing
  • 8.5 Validation
  • 8.5.1 Package validation
  • 8.5.2 Equipment validation
  • 8.5.3 Process validation
  • 8.5.4 Cleaning validation
  • 8.6 Sterilization
  • 8.7 Packaging
  • 8.7.1 Labeling
  • 8.8 Distribution
  • 8.9 Future trends and challenges
  • Abbreviations
  • References
  • 9 - Amniotic membrane in clinical medicine: history, current status, and future use
  • 9.1 Historical review
  • 9.2 Basic science
  • 9.2.1 Anatomy and development of the fetus and placenta
  • 9.2.2 Amnion
  • 9.2.3 Epithelial layer
  • 9.2.4 Basement membrane
  • 9.2.5 Stromal layer
  • 9.2.6 Chorion
  • 9.3 Cellular properties and benefits
  • 9.3.1 Antiscarring properties
  • 9.3.2 Anti-inflammatory properties
  • 9.3.3 Antimicrobial properties
  • 9.3.4 Regeneration and epithelialization
  • 9.3.5 Nonimmunogenic and immune privilege
  • 9.4 Procurement of amniotic membrane
  • 9.4.1 Fresh amniotic membrane
  • 9.4.2 Cryopreserved amniotic membrane
  • 9.4.3 Lyophilized amniotic membrane
  • 9.4.4 Low-heat dehydrated amniotic membrane
  • 9.4.5 Effects of preservation on membrane function
  • 9.4.6 Packing and delivery
  • 9.4.7 Application, usage, and distribution
  • 9.5 Clinical applications
  • 9.5.1 Wound care
  • 9.5.2 Ophthalmology
  • 9.5.3 Abdominal and pelvic surgery
  • 9.5.4 Cranial and spinal surgery
  • 9.5.5 Oral and maxillofacial surgery
  • 9.5.6 Cardiology and vascular surgery
  • 9.5.7 Nerve
  • 9.5.8 Orthopedic surgery
  • 9.5.9 Bone
  • 9.5.10 Tendon
  • 9.5.11 Joint and cartilage repair
  • 9.5.12 Plantar fasciitis
  • 9.5.13 Applications in foot and ankle surgery
  • 9.5.14 Tendon pathology
  • 9.6 Conclusion
  • 9.6.1 Future uses
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok