Machine Learning for Subsurface Characterization

 
 
Gulf Professional Publishing
  • 1. Auflage
  • |
  • erschienen am 12. Oktober 2019
  • |
  • 440 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-817737-2 (ISBN)
 

Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface.

  • Learn from 13 practical case studies using field, laboratory, and simulation data
  • Become knowledgeable with data science and analytics terminology relevant to subsurface characterization
  • Learn frameworks, concepts, and methods important for the engineer's and geoscientist's toolbox needed to support
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science & Techn.
  • 91,10 MB
978-0-12-817737-2 (9780128177372)
weitere Ausgaben werden ermittelt
Siddharth Misra is currently associate professor at the Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, Texas. His research work is in the area of data-driven predictive models, machine learning, geosensors, and subsurface characterization. He earned a PhD in petroleum engineering from the University of Texas and a bachelor of technology in electrical engineering from the Indian Institute of Technology in Bombay. He received the Department of Energy Early Career Award in 2018 to promote geoscience research.

1. Unsupervised outlier detection techniques for well logs and geophysical data 2. Unsupervised clustering methods for noninvasive characterization of fracture-induced geomechanical alterations 3. Shallow neural networks and classification methods for approximating the subsurface in situ fluid-filled pore size distribution 4. Stacked neural network architecture to model themultifrequency conductivity/permittivity responses of subsurface shale formations 5. Robust geomechanical characterization by analyzing the performance of shallow-learning regression methods using unsupervised clustering methods 6. Index construction, dimensionality reduction, and clustering techniques for the identification of flow units in shale formations suitable for enhanced oil recovery using light-hydrocarbon injection 7. Deep neural network architectures to approximate the fluid-filled pore size distributions of subsurface geological formations 8. Comparative study of shallow and deep machine learning models for synthesizing in situ NMR T2 distributions 9. Noninvasive fracture characterization based on the classification of sonic wave travel times 10. Machine learning assisted segmentation of scanning electron microscopy images of organic-rich shales with feature extraction and feature ranking 11. Generalization of machine learning assisted segmentation of scanning electron microscopy images of organic-rich shales 12. Characterization of subsurface hydrocarbon/water saturation by processing subsurface electromagnetic logs using a modified Levenberg-Marquardt algorithm 13. Characterization of subsurface hydrocarbon/water saturation using Markov-chain Monte Carlo stochastic inversion of broadband electromagnetic logs

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

122,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen