Pneumatic Conveying Design Guide

 
 
Butterworth-Heinemann (Verlag)
  • 3. Auflage
  • |
  • erschienen am 11. November 2015
  • |
  • 806 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100668-9 (ISBN)
 

Pneumatic Conveying Design Guide, 3rd Edition is divided into three essential parts, system and components, system design, and system operation, providing both essential foundational knowledge and practical information to help users understand, design, and build suitable systems.

All aspects of the pneumatic conveying system are covered, including the type of materials used, conveying distance, system constraints, including feeding and discharging, health and safety requirements, and the need for continuous or batch conveying.

This new edition also covers information on the other conveying systems available and compares them to this method. The existing content is brought up-to-date and the references are expanded and updated. This guide is an almost encyclopedic coverage of pneumatic conveying and as such is an essential text for both designers and users of pneumatic conveying systems. Each aspect of the subject is discussed from basic principles to support those new to, or learning about, this versatile technique.


  • Highly practical with usable and unbiased information to enable you to choose, design and build suitable systems with a high degree of confidence
  • New edition compares alternative conveying systems including pneumatic capsule conveying systems, and covers conveying of wet materials
  • Contains updated information on by-pass systems, and will introduce you to simulation software


David Mills has worked in the field of pneumatic conveying for over forty years. From 1998 - 2006 he was Professor of Bulk Solids Handling at Glasgow Caledonian University. He has published over 170 papers in the field, and has been working as an independent consultant in pneumatic conveying since 1996.
  • Englisch
  • Oxford
  • |
  • Großbritannien
Elsevier Science
  • 32,56 MB
978-0-08-100668-9 (9780081006689)
0081006683 (0081006683)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Pneumatic Conveying Design Guide
  • Copyright
  • Contents
  • Preface to the Third Edition
  • A - CONVEYING IN PIPELINES
  • 1 - INTRODUCTION TO PNEUMATIC CONVEYING AND THE GUIDE
  • INTRODUCTION
  • PNEUMATIC CONVEYING
  • SYSTEM FLEXIBILITY
  • INDUSTRIES AND MATERIALS
  • Fly ash
  • MODE OF CONVEYING
  • DILUTE PHASE
  • DENSE PHASE
  • CONVEYING AIR VELOCITY
  • PARTICLE VELOCITY
  • SOLIDS LOADING RATIO
  • CONVEYING CAPABILITY
  • SYSTEM TYPES
  • SYSTEM CAPABILITIES
  • Pressure gradient influences
  • Material influences
  • HIGH-PRESSURE CONVEYING
  • LONG-DISTANCE CONVEYING
  • VERTICAL CONVEYING
  • Conveying vertically up
  • Conveying vertically down
  • FLOW RATE CAPABILITY
  • INFORMATION PROVIDED
  • AVAILABILITY OF DESIGN DATA
  • SCOPE OF THE WORK
  • REVIEW OF CHAPTERS
  • CONVEYING IN PIPELINES
  • AIRFLOWS AND PARTICLE FLOWS
  • A REVIEW OF PNEUMATIC CONVEYING SYSTEMS
  • APPLICATIONS AND CAPABILITIES
  • CONVEYING SYSTEM COMPONENTS
  • Pipeline feeding devices
  • Air supply systems
  • Gas-solid separation devices
  • Pipelines and valves
  • GAS AND SOLID FLOWS
  • Airflow rate evaluation
  • Air-only relationships
  • Conveying characteristics
  • Conveying capability
  • Material property influences
  • Conveying systems that modify material properties
  • System selection considerations
  • CONVEYING SYSTEM DESIGN
  • Pipeline scaling parameters
  • Design procedures
  • Stepped pipelines
  • Case studies
  • First approximation design methods
  • Multiple use systems
  • CONVEYING SYSTEM OPERATION
  • Troubleshooting and material flow problems
  • Optimizing and up-rating of existing systems
  • Operating problems
  • Erosive wear
  • Particle degradation
  • Moisture and condensation
  • Health and safety
  • DEFINITIONS
  • CONVEYING AND SYSTEMS
  • Solids loading ratio
  • Dilute phase conveying
  • Dense phase conveying
  • Low-pressure and negative-pressure (vacuum) conveying
  • High-pressure conveying
  • Acceleration length
  • Null point
  • Pulsating flow
  • Stepped pipeline
  • Transient
  • VELOCITY RELATED
  • Superficial air velocity
  • Free air velocity
  • Slip velocity
  • Slip ratio
  • Minimum conveying air velocity
  • Conveying line inlet air velocity
  • Conveying line exit air velocity
  • Saltation
  • Choking
  • PROPERTIES
  • Free air conditions
  • Specific humidity
  • Relative humidity
  • Stoichiometric value
  • Air retention
  • Permeability
  • Hardness
  • Brinell hardness
  • Vickers hardness
  • Mohs' scale
  • NOMENCLATURE
  • SYMBOLS
  • GREEK
  • NONDIMENSIONAL PARAMETERS
  • SUPERSCRIPTS
  • SUBSCRIPTS
  • REFERENCE POINTS
  • PREFIXES
  • REFERENCE
  • 2 - AIRFLOW AND PARTICLE FLOW IN PIPELINES
  • INTRODUCTION
  • CONVEYING AIR VELOCITY
  • EVALUATION OF VELOCITY
  • SINGLE PHASE FLOW
  • The darcy equation for pressure drop
  • The influence of conveyed solids on pressure drop
  • SLIP VELOCITY
  • PARTICLE FEEDING INTO PIPELINES
  • ACCELERATION PRESSURE DROP
  • CONVEYING AIR VELOCITY PROFILE
  • PARTICLE DEPOSITION ISSUES
  • Pipeline orientation influences
  • Horizontal conveying
  • Conveying vertically up
  • Inclined pipelines
  • Conveying vertically down
  • FLOW THROUGH PIPELINE BENDS
  • MODE OF FLOW THOUGH PIPELINES
  • SOLIDS LOADING RATIO
  • DILUTE PHASE FLOW
  • DENSE PHASE FLOW
  • Sliding bed flow
  • TRANSITIONAL RELATIONSHIP
  • PLUG-TYPE FLOW
  • PIPELINE VELOCITY PROFILES
  • CONVEYING AIR VELOCITY EVALUATION
  • COMPRESSIBILITY EFFECTS
  • THE INFLUENCE OF PRESSURE
  • Stepped pipelines
  • The influence of temperature
  • THE NEED FOR CONVEYING DATA
  • MATERIAL DEGRADATION INFLUENCES
  • MEAN PARTICLE SIZE
  • PIPELINE MATERIAL
  • SOURCES OF DATA
  • REFERENCES
  • 3 - A REVIEW OF PNEUMATIC CONVEYING SYSTEMS
  • INTRODUCTION
  • SYSTEM TYPES
  • OPEN SYSTEMS
  • Positive pressure systems
  • Negative pressure (vacuum) systems
  • STAGED SYSTEMS
  • Shared negative and positive pressure systems
  • Dual vacuum and positive pressure systems
  • BATCH CONVEYING SYSTEMS
  • Semicontinuous systems
  • Single plug systems
  • MOBILE SYSTEMS
  • Road vehicles
  • Rail vehicles
  • Ships
  • CLOSED SYSTEMS
  • INNOVATORY SYSTEMS
  • Plug-forming systems
  • Bypass systems
  • PRESSURE DROP CONSIDERATIONS
  • Air injection systems
  • The Gattys system
  • Booster systems
  • System selection considerations
  • FLUIDIZED MOTION CONVEYING SYSTEMS
  • Air-assisted gravity conveyors
  • THE GELDART CLASSIFICATION OF FLUIDIZATION BEHAVIOR
  • Full channel conveyors
  • SYSTEM REQUIREMENTS
  • MULTIPLE-POINT PICKUP
  • MULTIPLE-POINT DELIVERY
  • MULTIPLE PICKUP AND DELIVERY
  • MULTIPLE MATERIAL-TYPE HANDLING
  • MULTIPLE DISTANCE CONVEYING
  • CONVEYING FROM STOCKPILES
  • START-UP WITH FULL PIPELINE
  • MATERIAL PROPERTY INFLUENCES
  • COHESIVE
  • COMBUSTIBLE
  • DAMP OR WET
  • ELECTROSTATIC
  • EROSIVE
  • FRIABLE
  • GRANULAR
  • HYGROSCOPIC
  • LOW MELTING POINT
  • RADIOACTIVE
  • TOXIC
  • VERY FINE
  • REFERENCES
  • 4 - APPLICATIONS AND CAPABILITIES
  • INTRODUCTION
  • HISTORICAL PERSPECTIVE
  • SYSTEM FLEXIBILITY
  • INDUSTRIES AND MATERIALS
  • FLOW RATE CAPABILITY
  • PRESSURE GRADIENT INFLUENCE
  • CONVEYING DISTANCE
  • Approximate capabilities
  • VERTICAL CONVEYING
  • Conveying vertically up
  • Conveying vertically down
  • APPLICATIONS
  • HIGH-PRESSURE DELIVERY CAPABILITY
  • MULTIPLE-DISTANCE CONVEYING
  • Flow splitting
  • MULTIPLE-MATERIAL HANDLING
  • Conveying multiple grades of material
  • TRANSPORT
  • PIPELINE BENDS
  • REFERENCES
  • B - CONVEYING SYSTEM COMPONENTS
  • 5 - PIPELINE FEEDING DEVICES
  • INTRODUCTION
  • SELECTION CONSIDERATIONS
  • Air leakage
  • Pressure drop
  • Maintenance
  • Material properties
  • DEVICES AVAILABLE
  • Lock hoppers
  • Blow tanks
  • FEEDING REQUIREMENTS
  • Flow metering
  • ROTARY VALVES
  • DROP-THROUGH VALVE
  • VALVE WEAR
  • ALTERNATIVE DESIGNS
  • Offset valve
  • Blow-through valve
  • DISCHARGE PERIOD AND PULSATIONS
  • AIR LEAKAGE
  • Positive pressure systems
  • Negative pressure systems
  • Influence of conveyed material
  • Air venting
  • Entrainment devices
  • ROTOR TYPES
  • Pocket types
  • HIGH-PRESSURE ROTARY VALVES
  • MATERIAL FEED RATE
  • Pocket-filling efficiency
  • Feed-rate control
  • SCREW FEEDERS
  • THE SIMPLE SCREW FEEDER
  • HIGH-PRESSURE DESIGN
  • VENTURI FEEDERS
  • COMMERCIAL VENTURI FEEDER
  • FLOW CONTROL
  • GATE-LOCK VALVES
  • SUCTION NOZZLES
  • FEED RATE CONTROL
  • FLOW AIDS
  • HOPPER OFF-LOADING
  • VACUUM-AERATED FEED NOZZLE
  • TRICKLE VALVES
  • BLOW TANKS
  • BASIC BLOW TANK TYPES
  • TOP AND BOTTOM DISCHARGE
  • FLUIDIZING MEMBRANES
  • BLOW TANK PRESSURE DROP
  • PROBLEMS WITH MOISTURE
  • ROAD AND RAIL VEHICLES
  • SINGLE BLOW-TANK SYSTEMS
  • BLOW TANKS WITHOUT A DISCHARGE VALVE
  • Conveying cycle analysis
  • BLOW TANKS WITH A DISCHARGE VALVE
  • Feed rate control
  • THE INFLUENCE OF BLOW TANK TYPE
  • BLOW TANK CONTROL SYSTEMS
  • TWIN BLOW-TANK SYSTEMS
  • Twin blow tanks in parallel
  • Twin blow tanks in series
  • BLOW-TANK AERATION
  • REFERENCES
  • 6 - AIR SUPPLY SYSTEMS
  • INTRODUCTION
  • TYPES OF AIR MOVER
  • AERODYNAMIC COMPRESSORS
  • FANS
  • Constant-speed characteristics
  • REGENERATIVE BLOWERS
  • POSITIVE-DISPLACEMENT COMPRESSORS
  • Roots-type (positive-displacement) blowers
  • Compressors
  • Exhausters
  • Staging
  • SLIDING-VANE ROTARY COMPRESSORS
  • LIQUID RING COMPRESSORS
  • ROTARY SCREW COMPRESSORS
  • RECIPROCATING COMPRESSORS
  • STAGING
  • SPECIFICATION OF AIR MOVERS
  • BLOWERS AND COMPRESSORS
  • Pressure
  • Volumetric flow rate
  • EXHAUSTERS AND VACUUM PUMPS
  • Vacuum
  • Volumetric flow rate
  • Air leakage and ingress
  • AIR COMPRESSION EFFECTS
  • DELIVERY TEMPERATURE
  • OIL-FREE AIR
  • WATER REMOVAL
  • Air line filters
  • Air drying
  • Refrigerants
  • Desiccants
  • The use of plant air
  • POWER REQUIREMENTS
  • IDLING CHARACTERISTICS
  • PRECOOLING SYSTEMS
  • REFERENCE
  • 7 - GAS-SOLID SEPARATION DEVICES
  • INTRODUCTION
  • SEPARATION REQUIREMENTS
  • SEPARATION MECHANISMS
  • PRESSURE DROP CONSIDERATIONS
  • DUST CONTROL
  • PARTICLE DEGRADATION
  • DUST EMISSION
  • SEPARATION DEVICES
  • GRAVITY SETTLING CHAMBERS
  • Collecting efficiency
  • CYCLONE SEPARATORS
  • Reverse flow type
  • Collecting efficiency
  • Typical dimensions
  • FILTERS
  • FILTRATION MECHANISMS
  • Collecting efficiency
  • FILTER MEDIA
  • Selection criteria
  • BAG FILTERS
  • FILTER SIZE
  • FILTER CLEANING
  • Reverse air jet cleaning
  • MAINTENANCE
  • SYSTEM CONSIDERATIONS
  • BLOW TANK SYSTEMS
  • VACUUM CONVEYING SYSTEMS
  • REFERENCE
  • 8 - PIPELINES AND VALVES
  • INTRODUCTION
  • PIPELINES
  • WALL THICKNESS
  • PIPELINE ROTATION
  • PIPELINE MATERIAL
  • Hygiene
  • Hoses
  • Erosive wear
  • Material degradation
  • Surface finish
  • BENDS
  • Blind tees
  • Special bends
  • Pressure drop
  • Steps
  • VALVES
  • DISCHARGE VALVES
  • Ball valves
  • Pinch valves
  • Dome valves
  • ISOLATING VALVES
  • Butterfly valves
  • Disc valves
  • Slide valves
  • VENT LINE VALVES
  • FLOW DIVERSION
  • Diverter valves
  • Isolating valves
  • Flow splitting
  • Non-return valves
  • RUBBER HOSE
  • EROSIVE WEAR AND PARTICLE DEGRADATION
  • PRESSURE DROP
  • CONVEYING COHESIVE MATERIALS
  • REFERENCE
  • C - GAS AND SOLID FLOWS
  • 9 - AIRFLOW RATE EVALUATION
  • INTRODUCTION
  • SUPPLY PRESSURE
  • VOLUMETRIC FLOW RATE
  • THE INFLUENCE OF VELOCITY
  • Material influences
  • COMPRESSIBILITY OF AIR
  • VOLUMETRIC FLOW RATE
  • PRESENTATION OF EQUATIONS
  • THE INFLUENCE OF PIPE BORE
  • Reference conditions
  • Pipeline influences
  • THE IDEAL GAS LAW
  • Working relationships
  • Gas constants
  • The use of nitrogen
  • THE INFLUENCE OF PRESSURE
  • SYSTEM INFLUENCES
  • VELOCITY DETERMINATION
  • Working relationships
  • Graphical representation
  • Suck-blow systems
  • Low pressure systems
  • STEPPED PIPELINE SYSTEMS
  • STEP LOCATION
  • DILUTE PHASE CONVEYING
  • DENSE PHASE CONVEYING
  • VACUUM CONVEYING
  • Step position
  • PIPELINE STAGING
  • PIPELINE PURGING
  • AIR EXTRACTION
  • THE INFLUENCE OF TEMPERATURE
  • CONVEYED MATERIAL INFLUENCES
  • Specific heat
  • THE INFLUENCE OF ALTITUDE
  • ATMOSPHERIC PRESSURE
  • THE USE OF AIR MASS FLOW RATE
  • 10 - AIR-ONLY RELATIONSHIPS
  • INTRODUCTION
  • PIPELINE PRESSURE DROP
  • FLOW PARAMETERS AND PROPERTIES
  • Conveying air velocity
  • Air density
  • Air viscosity
  • Friction factor
  • PRESSURE DROP RELATIONSHIPS
  • Straight pipeline
  • The influence of airflow rate
  • The influence of pipeline bore
  • Bends
  • Equivalent length
  • Other pipeline features
  • Total pipeline
  • Positive pressure systems
  • Negative pressure systems
  • Air-only pressure drop datum
  • VENTURI ANALYSIS
  • ATMOSPHERIC PRESSURE APPLICATIONS
  • HIGH-PRESSURE APPLICATIONS
  • AIRFLOW RATE CONTROL
  • NOZZLES
  • Flow analysis
  • Critical pressure
  • Nozzle size and capability
  • Nozzle types
  • ORIFICE PLATES
  • FLOW RATE CONTROL
  • STEPPED PIPELINES
  • Air-only pressure drop
  • Position of steps
  • Transition sections
  • REFERENCES
  • 11 - CONVEYING CHARACTERISTICS
  • INTRODUCTION
  • CONVEYING CHARACTERISTICS
  • CONVEYING MODE
  • SINGLE PHASE FLOW
  • THE DARCY EQUATION FOR PRESSURE DROP
  • THE USE OF AIR MASS FLOW RATE
  • GAS-SOLID FLOWS
  • THE INFLUENCE OF CONVEYED SOLIDS ON PRESSURE DROP
  • EVALUATION OF VELOCITY
  • CONVEYING LIMITATIONS
  • CONVEYING AIR VELOCITY EFFECTS
  • SOLIDS LOADING RATIO
  • THE DETERMINATION OF CONVEYING CHARACTERISTICS
  • INSTRUMENTATION AND CONTROL
  • EXPERIMENTAL PLAN
  • PRESENTATION OF RESULTS
  • DETERMINATION OF MINIMUM CONVEYING CONDITIONS
  • THE USE OF CONVEYING CHARACTERISTICS
  • ENERGY CONSIDERATIONS
  • THE INFLUENCE OF CONVEYING AIR VELOCITY
  • POWER REQUIREMENTS
  • SPECIFIC ENERGY
  • COMPONENT PRESSURE DROP RELATIONSHIPS
  • CONVEYING VERTICALLY DOWN
  • CONVEYING VERTICALLY UP
  • HORIZONTAL PIPELINES
  • PIPELINE BENDS
  • 12 - CONVEYING CAPABILITY
  • INTRODUCTION
  • THE INFLUENCE OF MATERIALS
  • LOW-PRESSURE CONVEYING-PART 1
  • Coal
  • Sodium chloride (salt)
  • Sodium carbonate (heavy soda ash)
  • Pearlite
  • Pulverized fuel ash (fly ash)
  • Iron powder
  • LOW-PRESSURE CONVEYING-PART 2
  • Alumina
  • Polyvinyl chloride powder
  • Barite
  • Coal
  • Fluidized bed combustor ash
  • Pulverized fuel ash
  • HIGH-PRESSURE CONVEYING-PART 1
  • Wheat flour
  • Granulated sugar
  • Polyethylene pellets
  • Ordinary portland cement
  • Comparison of materials-flow rate
  • Comparison of materials-conveying limits
  • Fly ash
  • HIGH-PRESSURE CONVEYING-PART 2
  • Polyvinylchloride resin
  • Terephthalic acid
  • 13 - MATERIAL PROPERTY INFLUENCES
  • INTRODUCTION
  • CONVEYING MODES
  • DENSE PHASE SLIDING BED FLOW
  • Transitional conveying limit
  • DENSE PHASE PLUG FLOW
  • Tests with nylon pellets
  • CONVEYING CAPABILITY CORRELATIONS
  • BASIC PROPERTY CLASSIFICATIONS
  • Modes of flow
  • Geldart's classification
  • Dixon's slugging diagram
  • AERATION PROPERTY CLASSIFICATIONS
  • Conveying characteristics
  • Material testing
  • Conveying mode correlations
  • Material flow rate correlations
  • MATERIAL GRADE INFLUENCES
  • ALUMINA
  • FLY ASH
  • DICALCIUM PHOSPHATE
  • MATERIAL DEGRADATION EFFECTS
  • Granulated sugar
  • Coal
  • Soda ash
  • REFERENCES
  • 14 - SYSTEMS THAT MODIFY MATERIAL PROPERTIES
  • INTRODUCTION
  • WEAR PROBLEMS
  • MATERIAL DEGRADATION PROBLEMS
  • PRODUCT FLAVOR PROBLEMS
  • POWER REQUIREMENTS
  • RESEARCH WORK
  • CONVEYING DATA
  • RESEARCH TEST FACILITIES
  • TEST DATA
  • Sandy alumina
  • Iron powder
  • Cement
  • Barite
  • Polyethylene pellets
  • MATERIAL CLASSIFICATION
  • NATURAL CONVEYING MODES
  • Dilute phase conveying
  • Dense phase sliding bed-type flow
  • Dense phase plug-type flow
  • MATERIAL TESTING
  • INNOVATORY SYSTEMS
  • PLUG FORMING SYSTEMS
  • Pressure drop considerations
  • BYPASS SYSTEMS
  • Pressure drop considerations
  • AIR INJECTION SYSTEMS
  • Booster systems
  • System selection considerations
  • PERFORMANCE COMPARISONS
  • Material flow rates
  • Operating envelopes
  • Mode of conveying
  • Bypass pipe influence
  • MATERIAL CLASSIFICATION
  • REFERENCES
  • 15 - SYSTEM SELECTION CONSIDERATIONS
  • INTRODUCTION
  • SYSTEM ECONOMICS
  • MATERIAL CONSIDERATIONS
  • The conveyed material
  • Conveying conditions
  • Conveying-line pressure drop
  • System influences
  • Material influences
  • PIPELINE GEOMETRY
  • Pipeline length
  • Pipeline bore
  • Pipeline bends
  • VARIABLES INVESTIGATED
  • THE INFLUENCE OF MATERIAL TYPE
  • Minimum conveying air velocity
  • Conveying air requirements
  • Conveying capabilities
  • THE INFLUENCE OF CONVEYING-LINE PRESSURE DROP
  • THE INFLUENCE OF CONVEYING DISTANCE
  • Solids loading ratio
  • Material flow rate
  • Conveying-line pressure drop
  • THE INFLUENCE OF PIPELINE BORE
  • MATERIAL COMPATIBILITY
  • DESIGN CURVES
  • CONVEYING PARAMETER COMBINATIONS
  • PIPELINE CONVEYING CAPACITY
  • POWER REQUIREMENTS
  • INFLUENCE OF CONVEYING DISTANCE
  • System considerations
  • INFLUENCE OF PIPELINE BORE
  • MATERIALS WITH GOOD AIR RETENTION PROPERTIES
  • MATERIALS WITH POOR AIR RETENTION PROPERTIES
  • MATERIAL COMPATIBILITY
  • SYSTEM SELECTION CONSIDERATIONS
  • SUMMARY CHARTS
  • MATERIALS CAPABLE OF DENSE PHASE CONVEYING
  • ALTERNATIVES TO DILUTE PHASE CONVEYING
  • D - CONVEYING SYSTEM DESIGN
  • 16 - PIPELINE SCALING PARAMETERS
  • INTRODUCTION
  • SCALING REQUIREMENTS
  • CONVEYING AIR VELOCITY
  • SOLIDS LOADING RATIO
  • CONVEYING DISTANCE
  • MINIMUM CONVEYING AIR VELOCITY
  • SCALING
  • Empty line pressure drop
  • Scaling model
  • Scaling procedure
  • Cement conveying limits
  • Potassium sulphate conveying limit
  • Scaling to longer distances
  • Dense phase conveying limit
  • Iterative process
  • Note
  • PIPELINE BORE
  • EMPTY-LINE PRESSURE DROP
  • SCALING MODEL
  • Working model
  • SCALING PROCEDURE
  • Scaling to larger bores
  • Influence on conveying parameters
  • Air supply pressure
  • Power requirements
  • PIPELINE BENDS
  • EQUIVALENT LENGTH
  • Method of analysis
  • Bend location
  • Pressure drop data
  • Classical analysis
  • BEND GEOMETRY
  • Air-only relationships
  • Conveying data
  • Comparison of performance
  • VERTICAL PIPELINES
  • CONVEYING VERTICALLY UP
  • Scaling parameter
  • CONVEYING VERTICALLY DOWN
  • INCLINED PIPELINES
  • Minimum conveying air velocity
  • Pipeline pressure gradient
  • PIPELINE MATERIAL
  • RUBBER HOSE
  • Comparison with steel
  • REFERENCE
  • 17 - DESIGN PROCEDURES
  • INTRODUCTION
  • THE USE OF EQUATIONS IN SYSTEM DESIGN
  • LOGIC DIAGRAM FOR SYSTEM DESIGN
  • Specify material to be conveyed
  • Specify mass flow rate of material required
  • Specify conveying distance required
  • Select pipeline bore
  • Select conveying-line pressure drop
  • Select conveying-line inlet air velocity
  • Calculate air mass flow rate
  • Calculate solids loading ratio
  • Check conveying-line inlet air velocity
  • Check conveying-line pressure drop
  • Re-specify material mass flow rate
  • Reselect pipeline bore
  • Calculate power required
  • System reassessment
  • Specify pipeline bore required
  • Specify air requirements
  • LOGIC DIAGRAM FOR SYSTEM CAPABILITY
  • Specify material to be conveyed
  • Specify conveying distance
  • Specify pipeline bore
  • Specify maximum value of conveying-line pressure drop
  • Select conveying-line inlet air velocity
  • Calculate air mass flow rate
  • Calculate volumetric airflow rate
  • Is the air mover capable?
  • Determine material flow rate
  • Is the material feeding device capable?
  • Calculate solids loading ratio
  • Check conveying-line inlet air velocity
  • Specify material flow rate
  • Specify air requirements
  • THE USE OF TEST DATA IN SYSTEM DESIGN
  • LOGIC DIAGRAM FOR SYSTEM DESIGN
  • Specify mass flow rate of material required
  • Specify conveying distance required
  • Conveying characteristics for material
  • Scale to conveying distance
  • Can material flow rate be achieved?
  • Calculate power required
  • Scale to different pipeline bore
  • Specify pipeline bore required
  • Specify air requirements
  • LOGIC DIAGRAM FOR SYSTEM CAPABILITY
  • Specify bounding conditions
  • Material conveying characteristics
  • Scale conveying characteristics
  • Specify air requirements
  • Specify material flow rate
  • TYPICAL PIPELINE AND MATERIAL INFLUENCES
  • THE INFLUENCE OF CONVEYING DISTANCE
  • THE INFLUENCE OF PIPELINE BORE
  • DESIGN CURVES
  • 18 - STEPPED PIPELINES
  • INTRODUCTION
  • CONVEYING AIR VELOCITY
  • COMPRESSIBILITY OF AIR
  • STEPPED PIPELINE SYSTEMS
  • STEP LOCATION
  • DILUTE PHASE CONVEYING
  • DENSE PHASE CONVEYING
  • VACUUM CONVEYING
  • STEP POSITION
  • PIPELINE STAGING
  • PIPELINE PURGING
  • DENSE PHASE CONVEYING
  • CONVEYING PERFORMANCE
  • FINE FLY ASH
  • EXISTING SYSTEMS
  • FIRST APPROXIMATION DESIGN
  • PRESSURE DROP ELEMENTS
  • Straight pipeline sections
  • Pipeline bends
  • Air-only pressure drop
  • Acceleration pressure drop
  • PRESSURE AND VELOCITY PROFILES
  • CASES CONSIDERED
  • Long distance
  • Single-bore pipeline
  • Stepped pipeline
  • Short distance
  • Single-bore pipeline
  • Stepped pipeline
  • Summary
  • Comparative analysis
  • AIR EXTRACTION
  • COMPARATIVE PERFORMANCE
  • Cement over 200 m
  • Cement over 1200 m
  • Polyethylene pellets
  • Velocity profiles
  • AIRFLOW RATE CONTROL
  • Nozzles
  • Off-take sections
  • VERTICALLY DOWN PIPELINES
  • STEPS FOR PIPELINES VERTICALLY DOWN
  • REFERENCES
  • 19 - CASE STUDY 1: A Fine Material
  • INTRODUCTION
  • DENSE PHASE CONVEYING OF CEMENT
  • CONVEYING DATA
  • CONVEYING DUTY
  • CONVEYING CAPABILITY
  • SUMMARY
  • DESIGN DUTY
  • CAPABILITY
  • DETERMINE
  • PROCEDURE
  • OPERATING POINT
  • Conveying-line inlet air velocity
  • Air-only pressure drop for operating point
  • EQUIVALENT LENGTHS
  • Test pipeline
  • Plant pipeline
  • SCALING FOR LENGTH
  • Conveying conditions-check
  • Conveying conditions-recalculate
  • SCALING FOR BORE
  • AIR REQUIREMENTS
  • Airflow rate
  • Power required
  • 20 - CASE STUDY 2: A Coarse Material
  • INTRODUCTION
  • DILUTE PHASE CONVEYING OF MAGNESIUM SULPHATE
  • CONVEYING DATA FOR MATERIAL
  • CONVEYING DUTY
  • CONVEYING CAPABILITY
  • SUMMARY
  • DESIGN DUTY
  • PIPELINE
  • CAPABILITY
  • DETERMINE
  • PROCEDURE
  • OPERATING POINT
  • AIR-ONLY PRESSURE DROP VALUES
  • Test pipeline
  • Plant pipeline of 105 mm bore
  • Plant pipeline of 250 mm bore
  • EQUIVALENT LENGTHS
  • Test pipeline
  • Plant pipeline
  • SCALING
  • Scaling for length
  • Scaling for bore
  • AIR REQUIREMENTS
  • Airflow rate
  • POWER REQUIRED
  • SPECIFIC COST
  • SOLIDS LOADING RATIO
  • 21 - FIRST APPROXIMATION DESIGN METHODS
  • INTRODUCTION
  • METHODS PRESENTED
  • AIR-ONLY PRESSURE DROP METHOD
  • BASIC EQUATIONS
  • Solids loading ratio
  • The ideal gas law
  • Volumetric flow rate
  • DERIVED RELATIONSHIPS
  • Material flow rate
  • Pipeline bore
  • Conveying-line pressure drop
  • Reference conditions
  • EMPIRICAL RELATIONSHIPS
  • Conveying-line inlet air velocity
  • Solids loading ratio
  • WORKING RELATIONSHIPS
  • Material flow rate
  • Negative-pressure systems
  • Positive-pressure systems
  • Pipeline bore
  • Air supply pressure
  • Negative-pressure systems
  • Positive-pressure systems
  • Air-only pressure drop
  • Negative-pressure systems
  • Positive-pressure systems
  • Vertical conveying
  • Procedure
  • Air-only pressure drop
  • Air supply pressure
  • UNIVERSAL CONVEYING CHARACTERISTICS METHOD
  • STRAIGHT PIPELINE
  • VERTICAL PIPELINES
  • PIPELINE BORE
  • STEPPED PIPELINES
  • PIPELINE BENDS
  • MINIMUM CONVEYING AIR VELOCITY
  • Conveying-line inlet air velocity
  • Operating point
  • Solids loading ratios
  • Influence of distance and pressure
  • Air-only pressure drop
  • Procedure
  • Dilute phase conveying
  • Dense phase conveying
  • COMPUTER-AIDED DESIGN PROGRAMS
  • REFERENCE
  • 22 - MULTIPLE USE SYSTEMS
  • INTRODUCTION
  • MULTIPLE MATERIAL HANDLING
  • AIR SUPPLY CONTROL
  • MATERIAL FLOW CONTROL
  • MULTIPLE DELIVERY POINTS
  • MATERIAL INFLUENCES
  • THE USE OF STEPPED PIPELINES
  • FLOUR AND SUGAR
  • ALUMINA
  • PULVERIZED FUEL ASH
  • Multiple grade fly ash-handling
  • STEP LOCATION
  • 23 - APPLICATIONS OF NUMERICAL MODELING IN PNEUMATIC CONVEYING
  • INTRODUCTION
  • MULTIPHASE MODELING METHODOLOGY
  • EULERIAN-BASED METHODS
  • THE VOLUME OF FLUID MODEL
  • The mixture model
  • The Eulerian model
  • LAGRANGIAN-BASED METHODS
  • Discrete element modeling principle
  • Coupling principles and models
  • INTERPHASE MOMENTUM TRANSFER AND TURBULENCE MODELING
  • INTERPHASE MOMENTUM TRANSFER
  • Syamlal-O'Brien
  • Di Felice
  • Ergun and Wen and Yu (or Gidaspow)
  • Energy-minimization multiscale model
  • Hill-Koch-Ladd
  • TURBULENCE MODELING
  • Eulerian-Eulerian turbulence modeling
  • Eulerian-Lagrangian turbulence modeling
  • BOUNDARY CONDITIONS
  • PRESSURE BOUNDARY CONDITIONS
  • VELOCITY BOUNDARY CONDITIONS
  • APPLICATION EXAMPLES
  • MULTIPHASE COMPUTATIONAL FLUID DYNAMIC STUDY OF A HORIZONTAL PNEUMATIC CONVEYING PIPELINE OF FINE POWDERS
  • Numerical approach
  • Meshing
  • Boundary conditions
  • Solution procedures for multiphase modeling
  • Results and discussion
  • Solids volume fraction
  • Solids axial flow velocity
  • Influence of particle size and density
  • COUPLED COMPUTATIONAL FLUID DYNAMIC DISCRETE ELEMENT MODELING OF DILUTE PNEUMATIC CONVEYING PIPELINE
  • Numerical approach
  • Meshing and modeling parameters
  • Results and discussion
  • CONCLUSION
  • REFERENCES
  • E - CONVEYING SYSTEM OPERATION
  • 24 - TROUBLESHOOTING AND MATERIAL FLOW PROBLEMS
  • INTRODUCTION
  • PIPELINE BLOCKAGE
  • GENERAL
  • Checklist
  • ON COMMISSIONING
  • Incorrect air mover specification
  • Conveying air velocity
  • Pipeline bore influence
  • Conveying gas influence
  • Influence of solids loading ratio
  • Air mover change
  • Conveying limitations
  • Influence of material type
  • Air leakage allowance
  • Over feeding of pipeline
  • Compressor capability
  • Material capability
  • Feeder control
  • Performance monitoring
  • Influence of pressure
  • Nonsteady feeding of pipeline
  • Commissioning
  • PIPELINE LAYOUT
  • ON START-UP
  • Moisture in line
  • Air-drying systems
  • Cold air
  • Material in pipeline
  • After unexpected shut down
  • AFTER A PERIOD OF TIME
  • Component wear
  • Pipeline effects
  • WITH NEW MATERIAL
  • Conveying capability
  • Air requirements
  • WITH CHANGE OF DISTANCE
  • Material feed rate
  • Airflow rate
  • Conveying potential
  • 25 - OPTIMIZING AND UPRATING OF EXISTING SYSTEMS
  • INTRODUCTION
  • OPTIMIZING CONVEYING CONDITIONS
  • MODIFYING PLANT COMPONENTS
  • REPLACING PLANT COMPONENTS
  • SYSTEM NOT CAPABLE OF DUTY
  • MATERIAL FEEDING
  • AIR FILTRATION
  • REDUCE AIRFLOW RATE
  • OPTIMIZING EXISTING SYSTEMS
  • CONTROL AND INSTRUMENTATION
  • FEEDER CONSIDERATIONS
  • THE USE OF A SIGHT GLASS
  • OFF-TAKE SYSTEMS
  • CASE STUDY
  • THE INFLUENCE OF CHANGING AIRFLOW RATE
  • Increasing airflow rate
  • Decreasing airflow rate
  • The effects of solids loading ratio
  • Power requirements
  • THE INFLUENCE OF CHANGING PIPELINE DIAMETER
  • System potential
  • ALTERNATIVE METHODS OF UPRATING
  • PIPELINE FEEDING
  • PIPELINE MODIFICATIONS
  • AIR SUPPLY PRESSURE
  • 26 - GENERAL OPERATING PROBLEMS
  • INTRODUCTION
  • EXISTING PLANT
  • TYPES OF SYSTEM
  • POSITIVE-PRESSURE SYSTEMS
  • Multipoint feeding
  • NEGATIVE-PRESSURE SYSTEMS
  • Air filtration
  • Backup filters
  • Multipoint discharge
  • Air ingress
  • Into reception hopper
  • Into pipeline
  • Stepped pipelines
  • Air mover specification
  • COMBINED SYSTEMS
  • FAN SYSTEMS
  • SINGLE-PLUG BLOW TANK SYSTEMS
  • SYSTEM COMPONENTS
  • BLOWERS
  • Air filters
  • BLOW TANKS
  • Control
  • Discharge limits
  • Change of distance or material
  • Discharge valve
  • Moisture in air
  • Pressure drop
  • Performance monitoring
  • Granular materials
  • ROTARY VALVES
  • Flow control
  • Air leakage
  • Venting
  • Start-up
  • Valve seizure
  • Valve wear
  • FILTERS
  • Material degradation
  • Maintenance
  • Sizing
  • Batch cycles
  • VACUUM NOZZLES
  • Flow control
  • SYSTEM RELATED
  • ALTITUDE
  • CONDENSATION
  • ELECTROSTATICS
  • EROSIVE WEAR
  • EXPLOSIONS
  • PIPELINE PURGING
  • PLANT WEAR
  • TEMPERATURE VARIATIONS
  • MATERIAL RELATED
  • ANGEL HAIRS
  • COATING OF PIPELINES
  • COHESIVE MATERIALS
  • CONSOLIDATION OF MATERIALS
  • DEGRADATION OF MATERIALS
  • GRANULAR MATERIALS
  • HYGROSCOPIC MATERIALS
  • LARGE PARTICLES
  • MATERIAL DEPOSITION
  • MATERIAL GRADE
  • TEMPERATURE
  • WET MATERIALS
  • 27 - EROSIVE WEAR
  • INTRODUCTION
  • DATA SOURCES
  • ISSUES CONSIDERED
  • INFLUENCE OF VARIABLES
  • IMPACT ANGLE AND SURFACE MATERIAL
  • Theories proposed
  • VELOCITY
  • Surface material
  • Bend wear
  • PARTICLE SIZE
  • Bend wear
  • PARTICLE HARDNESS
  • Bend wear
  • Hardness measurement
  • SURFACE MATERIAL
  • Steels (heat treated)
  • Resilient materials
  • Hard materials
  • SOLIDS LOADING RATIO
  • Bend wear
  • PARTICLE SHAPE
  • SURFACE FINISH
  • INDUSTRIAL SOLUTIONS AND PRACTICAL ISSUES
  • PIPELINE CONSIDERATIONS
  • BEND WEAR
  • Influence of bend geometry
  • Long-radius bends
  • Short-radius bends
  • Air injection
  • The use of hard materials
  • The use of resilient materials
  • Surface coatings
  • Wear back methods
  • The use of inserts
  • Ease of maintenance
  • WEAR PATTERNS AND DEFLECTING FLOWS
  • Influence of impact angle
  • WEAR OF STRAIGHT PIPELINE
  • Following bends
  • Pipe section joints
  • Large particles
  • REFERENCES
  • 28 - PARTICLE DEGRADATION
  • INTRODUCTION
  • PARTICLE BREAKAGE
  • OPERATING PROBLEMS
  • Filtration problems
  • Flow problems
  • Potential explosion problems
  • TEST RIGS AND DATA SOURCES
  • Acceleration tube device
  • INFLUENCE OF VARIABLES
  • VELOCITY
  • Peas
  • Quartz
  • Aluminium oxide
  • PARTICLE SIZE
  • Particle velocity influence
  • SURFACE MATERIAL
  • Material type
  • Surface thickness
  • PARTICULATE MATERIAL
  • PARTICLE IMPACT ANGLE
  • Other variables
  • RECOMMENDATIONS AND PRACTICAL ISSUES
  • PARTICLE VELOCITY
  • Dense phase conveying
  • Dilute phase conveying
  • PARTICLE IMPACT ANGLE
  • BEND MATERIAL
  • PNEUMATIC CONVEYING DATA
  • EXPERIMENTAL DETAILS
  • MATERIALS TESTED
  • CONVEYING DETAILS
  • TEST RESULTS
  • PARTICLE MELTING
  • MECHANICS OF THE PROCESS
  • INFLUENCE OF VARIABLES
  • PIPELINE TREATMENT
  • REFERENCES
  • 29 - MOISTURE AND CONDENSATION
  • INTRODUCTION
  • HUMIDITY
  • SPECIFIC HUMIDITY
  • The influence of temperature
  • The influence of pressure
  • RELATIVE HUMIDITY
  • Psychrometric chart
  • UNIVERSAL MODEL
  • AIR PROCESSES
  • HEATING
  • COOLING
  • Condensation in reception hopper
  • COMPRESSING
  • Adiabatic compression
  • Isothermal compression
  • COMPRESSION AND COOLING
  • EXPANDING
  • Vacuum conveying
  • DRYING
  • Filters
  • Refrigerants
  • Desiccants
  • ENERGY CONSIDERATIONS
  • STEADY-FLOW ENERGY EQUATION
  • Evaporative cooling
  • Flash drying
  • Vacuum drying
  • NOMENCLATURE
  • GREEK
  • SUBSCRIPTS
  • 30 - HEALTH AND SAFETY
  • INTRODUCTION
  • SYSTEM FLEXIBILITY
  • INDUSTRIES AND MATERIALS
  • MODE OF CONVEYING
  • SYSTEM INTEGRATION
  • DUST RISKS
  • DUST EMISSION
  • Dust as a health hazard
  • Dust concentration limits
  • Dust suppression
  • EXPLOSION RISKS
  • Ignition sources
  • Explosibility limits
  • Pressure generation
  • Expansion effects
  • Oxygen concentration
  • CONVEYING SYSTEMS
  • CLOSED SYSTEMS
  • OPEN SYSTEMS
  • Positive-pressure systems
  • Negative-pressure systems
  • SYSTEM COMPONENTS
  • BLOWERS AND COMPRESSORS
  • Oil free air
  • Pipeline feeding
  • Rotary valves
  • Blow tanks
  • CONVEYING OPERATIONS
  • TRAMP MATERIALS
  • STATIC ELECTRICITY
  • Earthing (grounding)
  • Humidity control
  • PARTICLE ATTRITION
  • EROSIVE WEAR
  • MATERIAL DEPOSITION
  • Pipeline purging
  • POWER FAILURE
  • EXPLOSION PROTECTION
  • MINIMIZING SOURCES AND PREVENTION OF IGNITION
  • Inerting
  • CONTAINMENT
  • EXPLOSION RELIEF VENTING
  • DETECTION AND SUPPRESSION
  • SECONDARY EXPLOSIONS
  • DETERMINATION OF EXPLOSION PARAMETERS
  • Test apparatus
  • Material classification
  • REFERENCES
  • 1 - THE DETERMINATION OF RELEVANT MATERIAL PROPERTIES
  • . INTRODUCTION
  • THE NEED FOR CHARACTERIZATION
  • PARTICLE AND BULK PROPERTIES
  • PARTICLE SIZE AND SHAPE
  • PARTICLE SIZE
  • PARTICLE SIZE DISTRIBUTION
  • Cumulative representation
  • Fractional representation
  • Methods of determining size
  • Sieving
  • Sedimentation
  • Elutriation
  • Electrical sensing zone
  • Microscopy
  • Laser diffraction
  • PARTICLE SHAPE
  • Descriptive terms
  • Shape factors
  • Specific surface
  • PARTICLE AND BULK DENSITY
  • PARTICLE DENSITY
  • Reference values
  • Methods of determination
  • Relative density method
  • Air comparison pycnometer
  • BULK DENSITY
  • Reference values
  • As-poured bulk density
  • Compacted (tapped) bulk density
  • Aerated bulk density
  • Applications
  • VOIDAGE
  • FLOW PROPERTIES
  • FACTORS INFLUENCING FLOWABILITY
  • Particle size
  • Particle shape
  • Electrostatic charge
  • Moisture
  • TESTS FOR FLOWABILITY
  • Angle of repose
  • Poured angle of repose
  • Drained angle of repose
  • Fluidized angle of repose
  • Applications
  • AERATION PROPERTIES
  • FLUIDIZATION
  • Fluidized angle of repose
  • Applications
  • THE PERMEAMETER
  • Superficial air velocity
  • Permeability factor
  • THE FLUIDIZATION PROCESS
  • Minimum fluidizing velocity
  • Pneumatic transport
  • THE INFLUENCE OF PARTICLE SIZE AND DENSITY
  • The Geldart classification
  • AIR RETENTION
  • Deaeration constant
  • Analysis
  • Vibrated deaeration constant
  • Analysis
  • SPECIFIC SURFACE
  • British Standard procedure
  • Lea and Nurse method
  • The Blaine method
  • REFERENCES
  • 2 - ADDITIONAL CONVEYING DATA
  • INTRODUCTION
  • MATERIALS AND PIPELINES LISTINGS
  • MATERIAL PROPERTIES LISTINGS
  • ADDITIONAL CONVEYING DATA
  • LOW-PRESSURE CONVEYING
  • Coal
  • Sodium chloride (salt)
  • Sodium carbonate (heavy soda ash)
  • Pearlite
  • HIGH-PRESSURE CONVEYING
  • Cryolite and fluidized bed ash
  • Pulverized coal
  • Lump coal and sandy alumina
  • Potassium sulphate and potassium chloride
  • Barite and cement
  • Aluminium fluoride and aluminium hydrate
  • Iron powder
  • Barite
  • Pearlite
  • Magnesium sulphate
  • Alumina
  • Zircon sand
  • Copper concentrate
  • Coke fines
  • Bentonite
  • Fluorspar
  • Coal
  • Silica sand
  • Cement
  • Potassium sulphate
  • Sodium sulphate
  • Magnesium sulphate
  • PIPELINE MATERIAL
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Y
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

190,40 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok