Clean Coal Engineering Technology

 
 
Butterworth-Heinemann (Verlag)
  • 2. Auflage
  • |
  • erschienen am 30. September 2016
  • |
  • 856 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-811366-0 (ISBN)
 

Clean Coal Engineering Technology, Second Edition provides significant information on the major power generation technologies that aim to utilize coal more efficiently, and with less environmental impact. With increased coal combustion comes heightened concerns about coal's impacts on human health and climate change, so the book addresses the reduction of both carbon footprints and emissions of pollutants, such as particulate matter, nitrogen oxides, and mercury.

Part 1 provides an essential grounding in the history of coal use alongside coal chemical and physical characteristics, worldwide distribution, and health and environmental impacts. Part 2 introduces the fundamentals of the major coal utilization technologies and examines the anatomy of a coal-fired power plant before going on to provide an overview of clean coal technologies for advanced power generation. Next, users will find a group of chapters on emissions and carbon management that have been extensively enlarged and updated for the second edition, thus reflecting the ever-increasing importance of this area.

The final section of the book focuses on clean coal technology programs around the world and the future role of coal in the energy mix. This fully revised and selectively expanded new edition is a valuable resource for professionals, including environmental, chemical, and mechanical engineers who seek an authoritative and thorough one-volume overview of the latest advances in cleaner power production from coal.


  • Provides a thorough, yet readable, one-volume guide to advanced power generation technologies for cleaner electricity production from coal
  • Retains the essential background information on coal characteristics and the fundamentals of coal-fired power generation
  • Presents extensively expanded and updated coverage on technologies for the reduction of pollutants, including particulate matter, sulfur oxides, and mercury
  • Emphasizes carbon capture methods, storage, and emerging technologies for the reduction of carbon footprints, alongside a discussion of coal's future in the energy mix


Mr. Miller (B.S. and M.S. Chemical Engineering) has more than 30 years' experience in energy research and development, combustion systems, fuels characterization, preparation and handling, hardware development and testing, and emissions characterization and control. He has been PI or co-PI of over $44 M in sponsored research. He is the author of four books published by Elsevier
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 64,35 MB
978-0-12-811366-0 (9780128113660)
0128113669 (0128113669)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Clean Coal Engineering Technology
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Part 1: Background Information
  • Chapter 1: The Chemical and Physical Characteristics of Coal
  • 1.1 Definition of Coal
  • 1.2 Origin of Coal
  • 1.3 Coalification
  • 1.4 The Classification of Coal
  • 1.4.1 Basic Coal Analysis
  • 1.4.2 The Ranks of Coal
  • 1.4.3 The Types of Coal
  • 1.4.4 The Grades of Coal
  • 1.4.5 Classification Systems
  • The ASTM classification system
  • International classification/codification systems
  • 1.4.6 General Coal Characteristics
  • 1.5 Coal Distribution and Resources
  • 1.5.1 Coal Reserves in the World
  • 1.6 Major Coal Producing Regions in the World
  • 1.6.1 North America
  • United States
  • Canada
  • 1.6.2 Europe and Eurasia
  • Russia
  • Germany
  • Ukraine
  • Kazakhstan
  • Turkey
  • Poland
  • 1.6.3 Asia Pacific
  • China
  • Australia
  • India
  • Indonesia
  • 1.6.4 Africa and the Middle East
  • South Africa
  • 1.6.5 Central and South America
  • Colombia
  • Brazil
  • References
  • Chapter 2: Coal as Fuel
  • 2.1 The History of Coal Use
  • 2.2 Coal Use Before the Industrial Revolution
  • 2.2.1 The Early History of US Coal Mining and Use
  • 2.3 Use of Coal During the Industrial Revolution
  • 2.4 Post-Industrial Revolution Use of Coal
  • 2.5 Overview of Energy in the United States
  • 2.6 Coal Production in the United States
  • 2.7 Coal Consumption in the United States
  • 2.8 United States Coal Exports and Imports
  • 2.9 World Primary Energy Production and Consumption
  • 2.9.1 World Primary Energy Production
  • 2.9.2 World Primary Energy Consumption
  • 2.10 Projections of Energy Use and Coal's Contribution to the Energy Mix
  • 2.10.1 World Consumption of Liquid Fuels
  • 2.10.2 World Consumption of Natural Gas
  • 2.10.3 World Consumption of Coal
  • Projected coal consumption in OECD Americas
  • Project coal consumption in OECD Europe
  • Projected coal consumption in OECD Asia
  • Projected coal consumption in non-OECD Asia
  • Projected coal consumption in non-OECD Europe and Eurasia
  • Projected coal consumption in Africa
  • Projected coal consumption in Central and South America
  • Projected coal consumption in the Middle East
  • 2.10.4 World Energy Consumption of Nuclear Energy
  • 2.10.5 World Energy Consumption of Renewable Energy
  • 2.10.6 Energy Outlook for the United States
  • References
  • Chapter 3: The Effect of Coal Usage on Human Health and the Environment
  • 3.1 Coal Mining
  • 3.1.1 Underground Mining
  • Subsidence
  • Generation of gases
  • Liquid effluents/acid mine drainage
  • Hydrologic impact
  • Health effects/miner safety
  • 3.1.2 Surface Mining
  • Surface disturbance
  • Generation of gases
  • Liquid effluents/acid mine drainage
  • Hydrologic impact
  • Solid waste/dust
  • Health effects/miner safety
  • 3.1.3 Legislation and Reclamation
  • 3.2 Coal Preparation
  • 3.2.1 Water Contamination From Preparation Plants
  • 3.2.2 Air Contamination From Preparation Plants
  • 3.2.3 Refuse Contaminants From Preparation Plants
  • 3.2.4 Health and Safety Issues
  • 3.3 Coal Transportation
  • 3.4 Coal Combustion Products
  • 3.5 Emissions from Coal Combustion
  • 3.5.1 Sulfur Oxides
  • Environmental effects
  • Health effects
  • 3.5.2 Nitrogen Oxides (NOx)
  • Environmental effects
  • Health effects
  • 3.5.3 Particulate Matter
  • Environmental effects
  • Health effects
  • 3.5.4 Organic Compounds
  • Environmental effects
  • Health effects
  • 3.5.5 Carbon Monoxide (CO)
  • Environmental effects
  • Health effects
  • 3.5.6 Trace Elements
  • Environmental effects
  • Cadmium
  • Mercury
  • Lead
  • Selenium
  • Other trace elements
  • Health effects
  • Arsenic
  • Boron
  • Beryllium
  • Cadmium
  • Chromium
  • Fluorine
  • Mercury
  • Manganese
  • Molybdenum
  • Nickel
  • Lead
  • Selenium
  • Vanadium
  • Radionuclides
  • 3.5.7 Greenhouse Gases
  • Environmental and health effects
  • References
  • Part 2: Coal Utilization Technologies
  • Chapter 4: Introduction to Coal Utilization Technologies
  • 4.1 Coal Combustion
  • 4.1.1 Brief History of Boilers and Coal Combustion Systems
  • Comparison of industrial and utility boilers
  • Size and number of units
  • Application of steam
  • Boiler design
  • Fuel diversity and global product competition
  • 4.1.2 Basic Steam Fundamentals and Their Application to Boiler Development
  • 4.1.3 The Chemistry of Coal Combustion
  • Devolatilization of pulverized coal and volatiles combustion
  • Char combustion
  • 4.1.4 Coal Combustion Systems
  • Fixed-bed combustion
  • Underfeed stokers
  • Overfeed stokers
  • Spreader stokers
  • Fluidized-bed combustion
  • Role of sorbents in an FBC process
  • Comparison of bubbling and circulating FBC boilers
  • Suspension firing
  • Dry-bottom firing
  • Wet-bottom firing
  • Cyclone furnaces
  • 4.1.5 Influence of Coal Properties on Utility Boiler Design
  • Furnace design
  • Ash characteristics
  • Slag viscosity
  • Slagging and fouling potential
  • 4.2 Carbonization
  • 4.2.1 Brief History of Carbonization (High-Temperature)
  • 4.2.2 Coking Processes
  • 4.2.3 Coal Properties for Coke Production
  • 4.2.4 Coking Conditions
  • 4.3 Gasification
  • 4.3.1 Brief History of Coal Gasification
  • 4.3.2 Principles of Coal Gasification
  • 4.3.3 Gasifier Types
  • Fixed-bed gasifier
  • Fluidized-bed gasifier
  • Entrained-flow gasifier
  • 4.3.4 Influence of Coal Properties on Gasification
  • Moisture
  • Ash
  • Volatile matter
  • Fixed carbon
  • Caking tendencies
  • Ash fusion
  • Reactivity
  • Coal size distribution
  • 4.3.5 Regional Distribution of Gasification Systems
  • 4.3.6 Commercial Gasification Systems
  • Fixed-bed gasifiers
  • Lurgi gasifier
  • British gas/Lurgi gasifier
  • Sedin
  • Fluidized-bed gasifiers
  • KBR gasifier
  • U-Gas gasifier
  • HTW gasifier
  • KRW gasifier
  • Entrained-flow gasifiers
  • GE energy gasifier
  • Shell gasifier
  • East China University of Science and Technology
  • Siemens gasifier
  • E-Gas gasifier
  • HT-L gasifier
  • MCSG gasifier
  • Prenflo gasifier
  • 4.3.7 Underground Coal Gasification
  • 4.4 Liquefaction
  • 4.4.1 The Beginning of the Synthetic Fuel Industry
  • 4.4.2 Indirect Liquefaction-Fischer-Tropsch Synthesis
  • 4.4.3 Direct Liquefaction
  • Bergius/I.G. Farben process
  • Solvent refining processes
  • SRC-I process
  • SRC-II process
  • Costeam process
  • Catalytic Processes
  • H-Coal process
  • Donor Solvent Processes
  • EDS process
  • Concluding Statements
  • References
  • Chapter 5: Anatomy of a Coal-Fired Power Plant
  • 5.1 Coal Transport to the Power Plant
  • 5.2 Coal Handling, Storage, and Processing
  • 5.2.1 Coal Handling
  • 5.2.2 Coal Storage
  • 5.2.3 Coal Processing/Size Reduction
  • 5.3 Steam Generation
  • 5.3.1 Furnace and Convection Pass
  • 5.3.2 Steam Superheaters and Reheaters
  • 5.3.3 Economizer
  • 5.3.4 Steam Drum
  • 5.3.5 Steam Temperature Control
  • 5.3.6 Air Heater (Preheater)
  • 5.4 Steam Turbines and Electricity Generation
  • 5.4.1 Steam Turbines
  • 5.4.2 Electric Generators
  • 5.5 Steam Condensers and Cooling Towers
  • 5.5.1 Steam Condensers
  • 5.5.2 Cooling Towers
  • 5.6 Water Treatment
  • 5.7 Environmental Protection
  • 5.8 Ash and By-Product Handling
  • 5.8.1 Bottom Ash Systems
  • 5.8.2 Convective Pass/Economizer Ash Systems
  • 5.8.3 Fly Ash Systems
  • 5.8.4 Scrubber Sludge Systems
  • References
  • Chapter 6: Clean Coal Technologies for Advanced Power Generation
  • 6.1 Power Cycles
  • 6.1.1 Rankine Cycle
  • 6.1.2 Brayton Cycle
  • 6.1.3 Combined Cycle
  • 6.2 Pulverized Coal-Fired Power Plants
  • 6.2.1 Advanced Pulverized Coal-Fired Plants
  • 6.2.2 Advanced Ultra-Supercritical Research and Development
  • 6.2.3 Oxy-Fuel Firing in Pulverized Coal-Fired Boilers
  • 6.3 Fluidized-Bed Combustion (FBC)
  • 6.3.1 Introduction
  • 6.3.2 Heat Transfer
  • 6.3.3 Combustion Efficiency
  • 6.3.4 Fuel Flexibility
  • 6.3.5 Pollutant Formation and Control
  • Sulfur dioxide
  • Transformation of sorbents in the FBC process
  • Bed temperature
  • Particle residence time
  • Bed quality
  • Gaseous environment
  • Combustor pressure
  • Sorbent chemical composition
  • Sorbent porosity
  • Sorbent surface area
  • Sorbent particle size
  • Nitrogen oxides
  • NOx formation
  • Fuel nitrogen and volatile matter content and fuel rank
  • Combustion temperature
  • Excess air
  • Gas velocity/residence time
  • Limestone effects
  • NOx reduction techniques
  • Particulate matter
  • Carbon monoxide/hydrocarbons
  • Trace elements
  • Ash chemistry and agglomeration issues
  • 6.3.6 Advanced Steam Cycles for Circulating Fluidized-Bed Boilers
  • 6.3.7 Oxy-Coal CFBC Technology
  • 6.4 Integrated Gasification Combined Cycle (IGCC)
  • 6.4.1 Introduction
  • 6.4.2 Gasification Island
  • 6.4.3 Gas Treatment and Sulfur Recovery
  • Chemical solvent processes
  • Amine processes
  • Physical solvent processes
  • Physical washes
  • Selexol
  • Rectisol
  • COS hydrolysis
  • Sulfur recovery
  • 6.4.4 Combined Cycle Power Plant
  • 6.4.5 IGCC With Carbon Capture
  • 6.4.6 Benefits and Limits of IGCC
  • Efficiency
  • Environmental impact
  • Sulfur emissions
  • NOx emissions
  • Mercury
  • Other emissions
  • Availability
  • Capital requirements
  • Risk assessment
  • 6.4.7 Commercial Status
  • Peurtollano (Peurtollano, Spain)
  • Polk Power Station (Mullberry, Florida)
  • Wilem-Alexander Centrale (Buggenum, Netherlands)
  • Wabash River (W. Terre Haute, Indiana)
  • Clean Coal Power R&D Company (Nakoso, Japan)
  • Vresova (Vresova, Czech Republic)
  • References
  • Part 3: Emissions and Carbon Management
  • Chapter 7: Coal-Fired Emissions and Legislative Action
  • 7.1 Major Coal-Related Health Episodes
  • 7.1.1 Preindustrial Revolution
  • 7.1.2 Postindustrial Revolution
  • 7.2 History of Legislative Action for Coal-Fired Power Plants
  • 7.2.1 Pre1970 Federal Legislation
  • National Air Quality Control Act of 1967
  • 7.2.2 Clean Air Act Amendments of 1970
  • AQC and NAAQSs
  • National emission standards
  • 40 CFR part 60, subpart D-Standards of performance for fossil fuel-fired steam generators
  • 40 CFR part 60, subpart Da-Standards of performance for electric utility steam generating units
  • 40. CFR part 60, subpart Db-standards of performance for industrial-commercial-institutional steam generating units
  • 40 CFR part 60, subpart Dc-Standards of performance for small industrial-commercial-institutional steam generating units
  • Emission factors
  • National emission standards for hazardous air pollutants
  • 7.2.3 Clean Air Act Amendments of 1977 and Prevention of Significant Deterioration
  • Prevention of significant deterioration
  • Nonattainment areas
  • 7.2.4 Clean Air Act Amendments of 1990
  • Title I: Provisions for attainment and maintenance of National Ambient Air Quality
  • Title III: Air toxics
  • Title IV: Acid deposition control
  • The SO2 program
  • The NOx program
  • Title V: Permitting
  • 7.2.5 Additional NOx Regulations and Trading Programs
  • Ozone Transport Commission NOx budget program (1999-2002)
  • NOx Budget Trading Program/NOx SIP Call (2003-08)
  • 7.2.6 CAIR (2009-15)
  • 7.2.7 Cross-State Air Pollution Rule
  • 7.2.8 Clean Air Mercury Rule/MATS/Utility MACT Rule
  • 7.2.9 Industrial Boiler Major Source and Area Source Rules
  • 7.2.10 New Source Review
  • 7.2.11 Fine PM
  • Climate change/greenhouse gas emissions
  • 7.3 Emissions Legislation in Other Countries
  • 7.3.1 European Union
  • Summary of sulfur dioxide, nitrogen oxides, and PM legislation (up to 2015/2016)
  • Sulfur dioxide
  • Nitrogen oxides
  • Particulate matter
  • 7.3.2 Current International Emissions Standards for SO2, NOx, and PM
  • 7.3.3 Trace Elements/Mercury
  • 7.3.4 Carbon Dioxide
  • 7.4 Air Quality and Emissions Trends
  • 7.4.1 Six Principal Pollutants
  • Nitrogen dioxide
  • Ozone
  • Sulfur dioxide
  • Particulate matter
  • Carbon monoxide
  • Lead
  • 7.4.2 Acid Rain
  • 7.4.3 HAPs/Air Toxics
  • 7.4.4 Mercury
  • 7.4.5 Greenhouse Gases/Carbon Dioxide
  • References
  • Chapter 8: Particulate Formation and Control Technologies
  • 8.1 Introduction
  • 8.2 Coal Fly Ash Formation and Characterization
  • 8.3 Mechanisms of Particulate Collection
  • 8.4 Particulate Control Technologies
  • 8.4.1 Cyclone Separators
  • Operating principles
  • Determining cyclone efficiency
  • Laminar flow approach
  • Cut diameter approach
  • A more advanced approach
  • Pressure drop
  • Factors that affect cyclone performance
  • 8.4.2 Electrostatic Precipitators
  • Operating principles
  • Factors that affect ESP performance
  • Fly ash resistivity
  • Other factors
  • Methods to enhance ESP performance
  • Wet ESPs
  • 8.4.3 Fabric Filters
  • Filtration mechanisms
  • Operating principles
  • Basic types of fabric filters
  • Reverse-gas
  • Shake-deflate
  • Pulse-jet
  • Fabric filter characteristics
  • Factors that affect baghouse performance
  • Methods to enhance filter performance
  • 8.4.4 Wet Collectors/Scrubbers
  • Spray chambers/towers
  • Venturi scrubbers
  • Cyclonic scrubbers
  • 8.4.5 Hybrid Systems
  • Compact hybrid particulate collector
  • Electrostatic-fabric integrated collector
  • 8.5 Economics of PM Control
  • 8.5.1 Cyclones
  • 8.5.2 Electrostatic Precipitators
  • 8.5.3 Fabric Filters
  • 8.5.4 Venturi Scrubbers
  • 8.5.5 Compact Hybrid Particulate Collector
  • References
  • Chapter 9: Formation and Control of Sulfur Oxides
  • 9.1 Introduction
  • 9.2 Chemistry of Sulfur Oxide (SO2 /SO3) Formation
  • 9.3 Sulfur Dioxide Control
  • 9.4 Techniques to Reduce Sulfur Dioxide Emissions
  • 9.4.1 Using Low-Sulfur Fuels
  • 9.4.2 Coal Cleaning
  • 9.4.3 Wet FGD
  • Absorption with chemical reaction
  • Limestone- and lime-based scrubbers
  • Limestone with forced oxidation
  • Limestone with forced oxidation producing a wallboard gypsum by-product
  • Limestone with inhibited oxidation
  • Magnesium enhanced lime
  • Limestone with dibasic acid
  • Sodium-based scrubbers
  • Lime dual alkali
  • Regenerative processes
  • Wellman-Lord process
  • Regenerative magnesia scrubbing
  • Seawater scrubbing process
  • Ammonia scrubbing process
  • 9.4.4 Dry FGD Technology
  • Spray dry scrubbers
  • Sorbent injection processes
  • Furnace sorbent injection
  • Economizer injection
  • Duct sorbent injection-Duct spray drying
  • Duct sorbent injection-Dry sorbent injection
  • Hybrid systems
  • Circulating fluidized-bed scrubbers
  • 9.5 Economics of FGD
  • References
  • Chapter 10: Formation and Control of Nitrogen Oxides
  • 10.1 Introduction
  • 10.2 NOx Formation Mechanisms
  • 10.2.1 Thermal NO
  • 10.2.2 Prompt NO
  • 10.2.3 Fuel NO
  • 10.2.4 Nitrogen Dioxide and Nitrous Oxide
  • 10.3 NOx Control in Pulverized Coal Combustion
  • 10.3.1 Combustion Modifications
  • Low-NOx burners
  • Furnace air staging
  • Flue gas recirculation
  • Fuel staging
  • Cofiring
  • Process optimization
  • 10.3.2 Flue Gas Treatment
  • Selective catalytic reduction
  • Selective non-catalytic reduction
  • Hybrid SNCR/SCR
  • Rich reagent injection
  • 10.4 NOx Control in Fluidized-Bed Combustion
  • 10.5 NOx Control in Stoker-Fired Boilers
  • 10.6 Economics of NOx Reduction/Removal
  • References
  • Chapter 11: Mercury Emissions Reduction
  • 11.1 Introduction
  • 11.2 Mercury in Coal
  • 11.2.1 US Coals
  • 11.2.2 International Coals
  • Australia
  • Canada
  • China
  • European Union
  • Russia
  • South Africa
  • Ukraine
  • Others
  • 11.3 Mercury Chemistry
  • 11.4 Mercury Emissions from Stationary Heat and Power Systems
  • 11.4.1 Emissions from Existing Control Technologies from Coal-Fired Power Plants
  • Electric generating units
  • Data from the 1999 mercury information collection request
  • Updated emissions estimates
  • Survey of largest mercury emitters from electric generating units
  • Industrial boilers
  • 11.5 Technologies for Mercury Control
  • 11.5.1 Capture Mechanisms
  • Absorption
  • Adsorption
  • 11.5.2 Fuel Switching/Blending
  • 11.5.3 Coal Cleaning
  • 11.5.4 Sorbent Injection
  • Overview of powdered activated carbon injection for mercury control
  • Balance-of-plant issues
  • 11.5.5 Wet Flue Gas Desulfurization
  • 11.5.6 Current State of Mercury Control
  • 11.6 Cost Estimates to Control Mercury Emissions
  • 11.6.1 Coal Cleaning
  • 11.6.2 General Economic Comparisons
  • 11.6.3 Activated Carbon Injection
  • References
  • Chapter 12: Formation and Control of Acid Gases and Organic and Inorganic Hazardous Air Pollutants
  • 12.1 Introduction
  • 12.2 Organic and Inorganic Hazardous Air Pollutants
  • 12.2.1 Organic Compounds
  • 12.2.2 Carbon Monoxide
  • 12.2.3 Trace Elements
  • 12.3 Trace Elements/Hazardous Organic Compounds/Halogens in Coal
  • 12.3.1 Trace Elements
  • 12.3.2 Hazardous Organic Compounds
  • 12.3.3 Halogens
  • 12.4 Formation and Emissions of Acid Gases
  • 12.4.1 Formation of Acid Gases
  • 12.4.2 Emissions of Acid Gases
  • 12.5 Formation and Emissions of Organic Compounds
  • 12.5.1 Formation of Organic Compounds
  • 12.5.2 Emissions of Organic Compounds
  • 12.6 Characteristics and Emissions of Trace Elements
  • 12.6.1 Characteristics/Formation of Inorganic Trace Elements
  • 12.6.2 Emissions of Inorganic Trace Elements
  • 12.7 Control Technologies
  • 12.7.1 Control Technologies for Acid Gases
  • So3
  • Sorbent Injection
  • Humidification
  • Wet ESPs
  • Halogens
  • 12.7.2 Control Technologies for Organic Compounds
  • 12.7.3 Control Technologies for Trace Elements
  • 12.8 Economics of Control Technologies
  • References
  • Chapter 13: Carbon Dioxide Emissions Reduction and Storage
  • 13.1 Introduction
  • 13.2 GHG Emissions
  • 13.3 CO2 Capture/Reduced Emissions Technologies
  • 13.3.1 Precombustion (IGCC)
  • 13.3.2 Oxy-Fuel Combustion
  • 13.3.3 Postcombustion
  • Amine-based liquid solvent systems
  • Aqueous ammonia process
  • Alkali carbonate-based systems
  • Solid sorbents
  • Membranes
  • Others
  • 13.3.4 Biomass Cofiring
  • 13.4 Transport of CO2
  • 13.5 CO2 Storage
  • 13.5.1 Geologic Storage
  • Oil and gas reservoirs
  • Unmineable coal
  • Deep saline formations
  • Basalt formations
  • Shale basins
  • Uncertainties in geologic storage
  • 13.5.2 Ocean Storage
  • 13.5.3 Terrestrial Storage
  • 13.5.4 Mineral Carbonation
  • 13.6 Economics of CO2 Capture and Storage
  • 13.6.1 Carbon Capture and Storage
  • Comparison of first-of-a-kind and n th-of-a-kind plants
  • Comparison of retrofit versus greenfield costs
  • Technology comparison utilizing bituminous coal
  • Technology comparison utilizing low-rank coals
  • Transport and storage costs for four US basins
  • Capture-ready plants
  • 13.6.2 Economics of Biomass Cofiring
  • 13.6.3 Comparison of LCOE of New Generation Coming on Line in 2020 and 2040
  • 13.6.4 Storage Costs
  • Geologic storage costs
  • Ocean storage costs
  • Mineral carbonization costs
  • 13.7 Monitoring, Verification, Accounting and Assessment
  • References
  • Chapter 14: Emerging Technologies for Reduced Carbon Footprint
  • 14.1 Introduction
  • 14.2 Chemical Looping
  • 14.2.1 Chemical Looping Combustion
  • 14.2.2 Chemical Looping Gasification
  • 14.2.3 Calcium Looping Process
  • 14.2.4 Chemical Looping Status and Research & Development Activities
  • 14.3 Hybrid Renewable/Fossil Fuel Processes
  • 14.3.1 Concentrated Solar Power
  • Parabolic trough collector
  • Fresnel reflector
  • Solar power tower
  • 14.3.2 Solar-Coal (Pulverized Coal) Combustion
  • Colorado integrated solar project
  • Sundt Solar Boost project
  • Liddell hybrid solar-coal plant
  • Kogan Creek Solar Boost project
  • 14.3.3 Solar-Coal Gasification
  • Gasification basics using solar energy
  • Solar-coal gasification for power production
  • Solar-coal polygeneration of liquid fuels and electricity
  • Status of the technology
  • References
  • Part 4: Clean Coal Technology Programs and Energy Security
  • Chapter 15: US and International Activities for Near-Zero Emissions During Electricity Generation
  • 15.1 Introduction to United States CCT Programs
  • 15.2 Clean Coal Technology Demonstration Program
  • 15.2.1 CCTDP Evolution
  • 15.2.2 CCTDP Funding and Costs
  • 15.2.3 CCTDP Projects
  • Environmental control devices
  • SO2 control technologies
  • NOx control technologies
  • Combined SO2 /NOx control technologies
  • Advanced electric power generation technology
  • Fluidized-bed combustion
  • Integrated gasification combined cycle
  • Advanced combustion/heat engines
  • Coal processing for clean fuels technology
  • Industrial applications technology
  • 15.2.4 CCTDP Accomplishments
  • 15.3 Power Plant Improvement Initiative
  • 15.3.1 PPII Projects
  • 15.3.2 Benefits of the PPII
  • 15.4 Clean Coal Power Initiative
  • 15.4.1 Program Importance
  • 15.4.2 Round 1 CCPI Projects
  • 15.4.3 Round 2 CCPI Projects
  • 15.4.4 Round 3 CCPI Projects
  • 15.4.5 CCPI Benefits
  • 15.5 Benefits of DOE's CCT Programs
  • 15.6 Vision 21
  • 15.7 FutureGen/FutureGen 2.0
  • 15.8 DOE Carbon Storage Program
  • 15.8.1 Core Storage R&D Technology Area
  • 15.8.2 Storage Infrastructure Technology Area
  • RCSPs initiative
  • 15.8.3 Strategic Program Support
  • International Energy Agency's Greenhouse Gas R&D Programme
  • Carbon Sequestration Leadership Forum
  • North American Carbon Atlas Partnership
  • International demonstrations
  • 15.9 International Carbon Storage Programs
  • 15.10 International CCT and Carbon Sequestration Activities
  • 15.10.1 Canada
  • 15.10.2 Australia
  • 15.10.3 Germany
  • 15.10.4 Japan
  • 15.10.5 China
  • References
  • Chapter 16: The Future Role of Coal
  • 16.1 Energy and the Economy
  • 16.2 Impact of the Clean Power Plan on Coal
  • 16.2.1 Impact on Coal Usage in US Power Plants
  • 16.2.2 Impact on Coal Production
  • 16.2.3 Impact on Coal Producing States in Meeting Compliance
  • 16.3 Challenges of Increasing Dependence on Gas-Fired Generation in the United States
  • 16.4 Technology Options for Meeting Carbon Dioxide Limits
  • 16.5 International Demand for Electricity
  • 16.6 Coal Usage Trends by the G7 Countries
  • 16.7 Coal and Energy Security
  • References
  • Part 5: Supporting Information
  • Appendix A: Regional definitions
  • Appendix B: Coal-Fired Emission Factors
  • Appendix C: Original list of hazardous air pollutants
  • Appendix D: International Emissions Standards
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

119,00 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok