Domain Walls

From Fundamental Properties to Nanotechnology Concepts
 
 
Oxford University Press
  • erschienen am 7. August 2020
  • |
  • 288 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-19-260741-6 (ISBN)
 
Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.
  • Englisch
  • Oxford
  • |
  • Großbritannien
144 illustrations
  • 12,80 MB
978-0-19-260741-6 (9780192607416)
weitere Ausgaben werden ermittelt
Professor Dennis Meier Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim. Professor Jan Seidel School of Materials Science & Engineering, UNSW Sydney. Professor Marty Gregg Centre for Nanostructured Media (CNM), Condensed Matter Physics and Materials Science, Queen's University Belfast. Professor Ramamoorthy Ramesh Purnendu Chatterjee Chair in Energy Technologies, Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley.
  • Cover
  • Domain Walls: From Fundamental Properties to Nanotechnology Concepts
  • Copyright
  • Preface
  • Contents
  • 1: Physical Properties inside DomainWalls: Basic Principles and Scanning Probe Measurements
  • 1.1 Introduction
  • 1.2 Domain Wall Structure and Thickness
  • 1.2.1 Domain Wall Thickness
  • 1.2.2 Internal Symmetry of Domain Walls
  • 1.3 Order Parameter Coupling
  • 1.4 Physical Properties of Domain Walls
  • 1.4.1 Measuring Physical Properties at Domain Walls by AFM
  • 1.4.2 Polarization
  • 1.4.3 Charge Transport
  • 1.4.4 Magnetism at Domain Walls
  • 1.4.5 Magnetotransport
  • 1.4.6 Mechanical Response
  • 1.5 Summary and Conclusions
  • References
  • 2: Novel Phases at Domain Walls
  • 2.1 Introduction to TbMnO3
  • 2.2 Formation of a Novel Phase at the Domain Walls of TbMnO3
  • 2.3 The Oxygen Stoichiometry of Off-Wall and On-Wall Areas in TbMnO3 Thin Films Grown on SrTiO3 Substrate
  • 2.4 Summary
  • References
  • 3: First-Principles Studies of Structural Domain Walls
  • 3.1 Introduction
  • 3.2 Basic Background
  • 3.2.1 Structural Instabilities, Order Parameters, and Symmetry Breakings
  • 3.2.2 The Role of Strain: Ferroelastic Features
  • 3.2.3 Electric and Elastic Compatibility Conditions
  • 3.3 Case Studies of Ideal Domain Walls
  • 3.3.1 Ferroelectric Materials: Perovskites PbTiO3 and BaTiO3
  • 3.3.2 Antiferrodistortive Materials: Perovskites SrTiO3 and CaTiO3
  • 3.3.3 Materials with Multiple Primary Order Parameters: Perovskite BiFeO3
  • 3.3.4 Improper Ferroelectrics: Hexagonal Manganites
  • 3.3.5 Perovskite Halides
  • 3.4 Studies of Non-ideal Domain Walls
  • 3.4.1 Defects (and Virtues) at Domain Walls
  • 3.4.2 Charged Ferroelectric Walls
  • 3.5 Large-Scale Simulations of Structural Domain Walls Based on First-Principles Models
  • 3.6 Outlook
  • References
  • 4: Fundamental Properties of Ferroelectric Domain Walls from Ginzburg-Landau Models
  • 4.1 Introduction
  • 4.2 Phenomenological Model for Perovskite Ferroelectrics
  • 4.2.1 Minimal KGLD Model
  • 4.2.2 Alternative Expressions and Other Useful Relationships
  • 4.3 Numerical Values of Free-Energy Coefficients of Selected Perovskite Ferroelectrics
  • 4.4 Full Sets of Ginzburg-Landau-Devonshire Model Parameters
  • 4.5 Phase Diagrams and Bulk Property Diagrams
  • 4.6 Domain Wall Properties
  • 4.7 Concluding Remarks
  • Acknowledgments
  • References
  • 5: Introduction to Domain Boundary Engineering
  • 5.1 Introduction
  • 5.2 The Concept
  • 5.3 The Ferroelastic Template
  • 5.4 Complexity
  • 5.5 Functional Domain Boundaries and Crackling Noise
  • 5.6 Conclusion
  • Refernces
  • 6: Improper Ferroelectric Domain Walls
  • 6.1 Basic Background
  • 6.2 Functional Domain Walls in Hexagonal Manganites
  • 6.2.1 Domain Wall Structure
  • 6.2.2 Electronic Domain Wall Properties
  • 6.2.3 Emulation of Electronic Components
  • 6.3 Boracites
  • 6.3.1 Improper Ferroelectricity in Boracites
  • 6.3.2 Injection and Motion of Conducting Domain Walls
  • 6.4 Spin-Driven Improper Ferroelectrics
  • 6.4.1 Fundamentals
  • 6.4.2 Configurational Domain Wall Control with Magnetic Fields and Light
  • 6.5 Outlook
  • References
  • 7: Three-Dimensional Optical Analysis of Ferroelectric Domain Walls
  • 7.1 Introduction
  • 7.2 Second-Harmonic Generation for Domain Wall Imaging
  • 7.2.1 The Nonlinear Optical Process
  • 7.2.2 Noncollinear Cherenkov-Type SHG
  • 7.2.3 Non-Ising Ferroelectric Walls Revealed by Collinear Backward SHG Polarimetry
  • 7.2.3.1 Method
  • 7.2.3.2 Néel Walls Revealed in Tetragonal Pb(Zr0.2,Ti0.8)O3
  • 7.2.3.3 Observation of Chiral Bloch Walls and Bloch Lines in Stoichiometric LiTaO3
  • 7.2.3.4 Accuracy of SHG Polarimetry Measurements in Backward Geometry
  • 7.2.4 Collinear Forward SHG at Zigzag Walls
  • 7.3 Linear Optical Coherence Tomography at DWs
  • 7.4 Future Perspectives
  • References
  • 8: Turing Patterns in Ferroelectric Domains: Nonlinear Instabilities
  • 8.1 Introduction to Instabilities and Turing Patterns
  • 8.2 Ferroelectric Domain Instabilities from Landau-Ginzburg
  • 8.3 Nonlinear Geometric Distortions
  • 8.4 Dimensionality Effects in PbTiO3
  • 8.5 Fourfold Vertices in PbTiO3
  • 8.6 Voronoi Partitions and n-Fold Vertices in PbTiO3
  • 8.7 Summary
  • References
  • 9: Photoelectric Effects at Domain Walls
  • 9.1 Introduction
  • 9.2 Bulk Photovoltaic Effect
  • 9.3 Tip-Enhanced Photovoltaic Effect
  • 9.4 The Role of Domain Walls in the Ferroelectric Photovoltaic Effect
  • 9.5 Light-Induced Polarization Switching and Domain Wall Motion
  • 9.6 Summary
  • Acknowledgments
  • References
  • 10: Transmission Electron Microscopy Study of Ferroelectric Doma in Wallsin BiFeO3 Thin Films: Structures and Switching Dynamics
  • 10.1 Introduction
  • 10.2 Characterization of DW Structures by TEM
  • 10.2.1 Diffraction-Contrast TEM
  • 10.2.2 Atomic-Resolution TEM
  • 10.2.3 In Situ TEM
  • 10.3 DW Structures in BiFeO3 Thin Films
  • 10.3.1 Boundary-Condition Engineering of DW Patterns
  • 10.3.2 Defect Engineering of DW Patterns
  • 10.4 DW Dynamics in BiFeO3 Thin Films
  • 10.4.1 Effects of Defects on the Switching of DWs
  • 10.4.2 Switching of Charged DWs
  • 10.5 Summary and Outlook
  • Acknowledgments
  • References
  • 11: Nanoscale Ferroelectric Switching: A Method to Inject and Study Non-equilibrium Domain Walls
  • 11.1 Introduction
  • 11.2 Generating Non-equilibrium Domain Morphologies in Ferroelectric Single Crystals
  • 11.3 Non-equilibrium Domain Walls Evidenced from Electronic Conduction
  • 11.4 Domain Wall Contributions to Electromechanical Response Studied via Local Methods
  • 11.5 Chemical Aspects of Ferroelectric Switching
  • 11.6 Perspective: Understanding Domain Walls with Modeling, and Statistical and Machine Learning
  • 11.7 Summary
  • References
  • 12: Landau-Ginzburg-Devonshire Theory for Domain Wall Conduction and Observation of Microwave Conduction of Domain Walls
  • 12.1 Introduction
  • 12.2 Landau-Ginzburg-Devonshire Theory for Domain Wall Conduction in Ferroelectric Semiconductors and Their Thin Films
  • 12.2.1 General Formalism
  • 12.2.2 Static Conductivity of Ferroelectric Domain Walls and Nanodomains in Uniaxial Ferroelectric Semiconductors
  • 12.2.3 Static Conductivity and Structure of Ferroelectric Domain Walls in Multiaxial Ferroelectric Semiconductors
  • 12.3 Microwave Conductance of Ferroelectric Domain Walls
  • 12.3.1 Microwave Impedance Microscopy of 180? Domain Walls in a Uniaxial Ferroelectric Film
  • 12.3.2 Microwave Signatures of Charged Domain Walls
  • 12.3.3 Modeling of Microwave Response
  • 12.3.4 Interpretation of the Origin of Microwave Conductance
  • References
  • 13: Control of Ferroelectric Domain Wall Motion using Electrodes with Limited Conductivity
  • 13.1 Introduction
  • 13.2 Control of DW Nucleation Sites
  • 13.3 DW Motion Control using Electrodes with Limited Conductivity
  • 13.4 The Stefan Model for DW Propagation
  • 13.5 Control of DW Velocity via Thickness-Dependent Resistivity of Pt Electrodes
  • 13.6 Charge-Controlled 2D DW Motion
  • 13.7 Applications and Outlook
  • References
  • 14: Multiscale Simulations of Domains in Ferroelectrics
  • 14.1 Introduction
  • 14.2 Atomistic Potentials of Ferroelectrics
  • 14.3 Predicting Coercive Fields from First Principles
  • 14.3.1 Domain-Wall Mobility from MD Simulations
  • 14.3.2 Nucleation at Domain Walls
  • 14.3.3 Continuum Nucleation Model
  • 14.3.4 Coarse-Grained Simulation of P-E Hysteresis Loop
  • 14.4 Dynamics in Single-Crystal Relaxors
  • 14.4.1 Order Parameters Characterizing Relaxor Phase Transitions
  • 14.4.2 Slush-Like Polar Structures in Single-Crystal Relaxors
  • 14.5 Perspectives
  • Acknowledgments
  • References
  • 15: Electronics Based on Domain Walls
  • 15.1 Introduction
  • 15.2 Controlling Electronic Properties at Ferroelectric Domain Walls
  • 15.3 Ferroelectric Domain Wall Memory
  • 15.4 Outlook
  • References
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

68,49 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen