Professional resource providing basic to intermediate levels of R coding in respect of actuarial applications, with real-life examples
R Programming for Actuarial Science provides a grounding in R programming applied to the mathematical and statistical methods that are of relevance for actuarial work, equipping the student with knowledge of statistical distributions and methods to summarize data. The authors have a combined experience of 20 years in actuarial consultancies and insurance companies, as well as over 20 years in university teaching and research.
In R Programming for Actuarial Science, readers will find:
* Basic theory for each chapter--the length matching the complexity of the topic--to complement other actuarial textbooks which provide foundational theory in depth
* Information on compound interest, statistical inference, asset-liability matching, time series, loss distributions, contingencies, mortality models, and option pricing
* Exercises to write code, to enable students to gain a better understanding of underlying mathematical and statistical principles
* An overall basic to intermediate level of coverage in respect of numerous actuarial applications, and real-life examples included with every topic
Providing a highly useful combination of practical discussion and basic theory, R Programming for Actuarial Science is an essential reference for BSc/MSc students in actuarial science, trainee actuaries studying privately, and qualified actuaries with little programming experience, along with undergraduate students studying finance, business, and economics.
Auflage
Sprache
Verlagsort
Produkt-Hinweis
Dateigröße
ISBN-13
978-1-119-75498-5 (9781119754985)
Schlagworte
Schweitzer Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BISAC Klassifikation
Warengruppensystematik 2.0
Peter McQuire, FIA, is a Lecturer in Actuarial Science at the University of Kent. He has 18 years of experience in pension scheme consultancy and risk management, and more than 10 years teaching at the University. He is a Fellow of the Institute and Faculty of Actuaries.
Dr. Alfred Kume is a Senior Lecturer in Statistics at the University of Kent with more than 20 years of teaching experience and exposure to general insurance.
About the Companion Website xxi
Introduction 1
1 R : What You Need to Know to Get Started 9
2 Functions in R 33
3 Financial Mathematics (1): Interest Rates and Valuing Cashflows 45
4 Financial Mathematics (2): Miscellaneous Examples 63
5 Fundamental Statistics: A Selection of Key Topics -- Dr A Kume 87
6 Multivariate Distributions, and Sums of Random Variables 139
7 Benefits of Diversification 147
8 Modern Portfolio Theory 155
9 Duration -- A Measure of Interest Rate Sensitivity 171
10 Asset-Liability Matching: An Introduction 177
11 Hedging: Protecting Against a Fall in Equity Markets 187
12 Immunisation -- Redington and Beyond 195
13 Copulas 211
14 Copulas -- A Modelling Exercise 237
15 Bond Portfolio Valuation: A Simple Credit Risk Model 247
16 The Markov 2-State Mortality Model 259
17 Approaches to Fitting Mortality Models: The Markov 2-state Model and an Introduction to Splines 273
18 Assessing the Suitability of Mortality Models: Statistical Tests 295
19 The Lee-Carter Model 311
20 The Kaplan-Meier Estimator 329
21 Cox Proportionate Hazards Regression Model 339
22 Markov Multiple State Models: Applications to Life Contingencies 351
23 Contingencies I 383
24 Contingencies II 403
25 Actuarial Risk Theory -- An Introduction: Collective and Individual Risk Models 447
26 Collective Risk Models: Exercise 473
27 Generalised Linear Models: Poisson Regression 481
28 Extreme Value Theory 501
29 Introduction to Machine Learning: k-Nearest Neighbours (kNN) 513
30 Time Series Modelling in R -- Dr A Kume 523
31 Volatility Models -- GARCH 551
32 Modelling Future Stock Prices Using Geometric Brownian Motion: An Introduction 571
33 Financial Options: Pricing, Characteristics, and Strategies 585
Index 605
Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
- Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
- Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
- E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.