New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 26. April 2016
  • |
  • 298 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-63706-2 (ISBN)
 

New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity is the latest volume in the Progress in Brain Research series that focuses on new trends and developments in neurovascular coupling. This established international series examines major areas of basic and clinical research within the neurosciences, as well as popular and emerging subfields. This volume takes an integrated approach to review and summarize some of the most recent progress reported on the connection between brain circulation and neural plasticity.


  • Explores new trends and developments in basic and clinical research in the neurovascular coupling subfield of neuroscience
  • Uses an integrated approach to review and summarize recent progress
  • Emphasizes potential applications in a clinical setting
  • Enhances the literature of neuroscience by further expanding the established, ongoing international series Progress in Brain Research
0079-6123
  • Englisch
  • Amsterdam
  • |
  • Niederlande
Elsevier Science
  • 17,05 MB
978-0-444-63706-2 (9780444637062)
0444637060 (0444637060)
weitere Ausgaben werden ermittelt
  • Front Cover
  • New Horizons in Neurovascular Coupling: A Bridge Between Brain Circulation and Neural Plasticity
  • Copyright
  • Contributors
  • Contents
  • Preface
  • Part I: A Physiological Basis of Neurovascular Coupling
  • Chapter 1: Neurogenic control of parenchymal arterioles in the cerebral cortex
  • 1. Introduction
  • 2. Neurogenic Control of Intracortical rCBF
  • 2.1. Local Neural Circuits of the Cerebral Cortex
  • 2.2. Changes in rCBF Induced by the Activity of Cortical Neurons
  • 2.3. Cholinergic Vasodilation Induced by Afferent Fibers from the Basal Forebrain
  • 2.3.1. Effect of NBM stimulation on the activity of cortical neurons
  • 2.3.2. Properties of cholinergic terminals in the cortex and a possible mechanism of dilation of the penetrating arteriole ...
  • 3. Contribution of the Neurogenic Vasodilative System to Neurovascular Coupling
  • 3.1. Possible Involvement of the Cholinergic Receptor in rCBF
  • 3.2. Possible Involvement of Afferent Input from NBM
  • 4. Differences in rCBF Responses Between Different Animal Species
  • 4.1. NBM Vasodilative System
  • 4.2. Effect of Noxious Somatic Stimulation
  • 4.3. Effect of Nonnoxious Somatic Stimulation
  • 5. Role of Neurogenic Vasodilation: Neuroprotection
  • 5.1. Antiischemic Effect of Nicotinic Stimulation in the Hippocampus
  • 5.2. Stimulation of NBM Induces an Antiischemic Effect in the Cerebral Cortex
  • 5.3. Stimulation of NBM Increases the Secretion of NGF
  • 6. The Effect of Aging on the Neural Regulation of rCBF
  • 6.1. Aging of Neurovascular Coupling
  • 6.2. Aging of the Cholinergic Vasodilative System of the Basal Forebrain
  • 7. Conclusion
  • Acknowledgment
  • References
  • Chapter 2: Involvement of astrocytes in neurovascular communication
  • 1. Introduction
  • 1.1. Historical Perspectives
  • 1.2. Technical Advancements
  • 2. Astrocytic Calcium Dynamics and Vascular Control
  • 2.1. Calcium Elevations in Astrocytes
  • 2.2. Extracellular Changes by Astrocytic Calcium Elevations
  • 2.3. Astrocyte-Vascular Interactions Observed in Acute Brain Slices
  • 2.4. Astrocyte-Vascular Interactions Observed with in vivo Experiments
  • 2.5. Alternative Perspectives to Astrocytic Calcium and Vascular Tone
  • 3. Metabolic Neurovascular Coupling Mediated by Astrocytes
  • 4. K+ and Water Redistribution Through Astrocytes
  • 5. Structural Specialization of Astrocytic Endfeet
  • 6. Future Perspectives: In Relation to Neuropathology
  • Acknowledgments
  • References
  • Chapter 3: Vascular potassium channels in NVC
  • 1. Hyperkalemia Can Produce Relaxation of Vascular Smooth Muscle Cells
  • 2. A Possible Source of the Extracellular Potassium Ions in End Feet/Vascular Smooth Muscle Space
  • 3. A Possible Source of the Extracellular Potassium Ions in Vascular Smooth Muscle/Endothelial Cell Space
  • 4. Other Potassium Channels that Could Critically Contribute to Regulation of Neurovascular Coupling
  • 5. A Consideration on AA-Mediated, pO2-Sensitive Vasoregulation
  • 6. Recent Topics and a Future Direction: Precapillary Microvessels Expressing Smooth Muscle Actin and Direct Neuronal Gluc ...
  • 7. Summary
  • References
  • Part II: Methodology for Measurements of Brain Circulation
  • Chapter 4: Bridging macroscopic and microscopic methods for the measurements of cerebral blood flow: Toward finding the de ...
  • 1. Outlines of CBF Measurement and Physiology
  • 1.1. History of Developing the Techniques for CBF Measurement
  • 1.2. Definition of Blood Flow: Bulk Flow vs Perfusion Flow
  • 1.3. Determinants of CBF Physiology: Vascular Networks and Structures
  • 1.4. Determinants of CBF Physiology: Blood Viscosity and Resistances
  • 2. Macroscopic Method
  • 2.1. Diffusible Tracer
  • 2.2. Nondiffusible Tracer
  • 2.3. Microsphere Tracer
  • 2.4. Assumption for Spatial and Temporal Heterogeneity
  • 3. Microscopic Method
  • 3.1. Fluorescent Tracers and Instruments
  • 3.2. Direct Assessment of Spatiotemporal Heterogeneity in Microvascular Flow
  • 3.3. Measurements of RBC Speed
  • 3.4. Measurements of Blood Plasma Speed
  • 3.5. Plasma vs RBC Speed
  • 4. Bridging Macroscopic and Microscopic Measurements of CBF
  • 4.1. Comparison of Parameter Measured: How We Can Integrate Those Measurements?
  • 4.2. Difference in Heterogeneity Scales
  • 4.3. Comparison of Parameter Changed in Response to Physiological and Biochemical Perturbations
  • 4.4. Comparison of Parameter Changed in Response to Functional Focal Perturbation
  • 4.5. Future Works
  • 5. Concluding Remarks
  • References
  • Chapter 5: New horizons in neurometabolic and neurovascular coupling from calibrated fMRI
  • 1. Measuring CMRo2 with Calibrated fMRI
  • 2. The M Parameter
  • 3. The Constant a
  • 4. The Constant ß
  • 5. Translational Applications of Calibrated fMRI
  • Acknowledgment
  • References
  • Chapter 6: Submillimeter-resolution fMRI: Toward understanding local neural processing
  • 1. Introduction
  • 2. Vascular Constraints
  • 3. Functional Column-specific Hemodynamic Responses
  • 3.1. Signal Source of OIS
  • 3.2. Spatial Specificity of OISI
  • 3.3. Spatial Specificity of fMRI
  • 4. Layer-Specific fMRI Response in the Neocortex
  • 5. Layer-specific fMRI Response in the Main Olfactory Bulb
  • 5.1. Olfactory Bulb Laminar Circuit and Vaso-Architecture
  • 5.2. Odor Stimulation Evokes Unique Spatial Patterns of Glomerular Activity in the Glomerular Layer
  • 5.3. The CBV fMRI Response Coincides with the Layer-Specific Neuronal Activation, While the BOLD fMRI Response Poorly Corr ...
  • 6. Neurovascular Coupling in Olfactory Bulb
  • References
  • Chapter 7: Hemodynamic signals in fNIRS
  • 1. Basic Theory of NIRS
  • 1.1. What is NIRS/fNIRS?
  • 1.2. NIRS Instrumentation
  • 1.3. NIR Light Propagation in the Head
  • 2. NIRS Signals in Activated Areas
  • 2.1. NIRS Signals and Regional Cerebral Blood Flow
  • 2.2. Vascular Specificity of NIRS
  • 3. NIRS Signals and fMRI Signals
  • 3.1. Comparison of NIRS Signals and fMRI Signals
  • 3.2. Negative BOLD Responses and NIRS Signals
  • 3.2.1. Prolonged negative signal
  • 3.2.2. Initial dip and poststimulus undershoot
  • 4. NIRS Signals and Neural Activities
  • 4.1. Electroencephalogram Oscillations and Hemodynamic Responses
  • 4.1.1. Alpha activity
  • 4.1.2. Gamma activity
  • 4.2. Fluctuations in NIRS Signals and EEG Oscillations in the Resting State
  • 5. NIRS Signals Originating from Cerebral and Extracerebral Tissue
  • 5.1. Influences of the Skin Blood Flow on NIRS Signals During Brain Activation
  • 5.2. Influences of the Skin Blood Flow on NIRS Signals in the Resting State
  • 5.3. Influences of the Subarachnoid Space and the Skull on NIRS Signals
  • 6. Selective and Quantitative NIRS Measurements of Cerebral Hb
  • 6.1. Selective Measurements of Cerebral Hb
  • 6.2. Quantitative and Selective Measurements of Cerebral Hb
  • 6.3. Diffuse Optical Tomography
  • 7. Next-Generation NIRS
  • References
  • Part III: Plastic Changes in Neurovascular Coupling
  • Chapter 8: Mechanisms of cellular plasticity in cerebral perivascular region
  • 1. Introduction
  • 2. Cellular Plasticity and Function of Neurovascular Unit Components
  • 2.1. Neurons
  • 2.2. Glial Cells (Astrocytes, Oligodendrocytes, and Microglia)
  • 2.3. Vascular Cells (Cerebral Endothelial Cells and Pericytes)
  • 3. Neurovascular/Oligovascular Niche Mediates Neurogenesis and Oligodendrogenesis in the Neurovascular Unit
  • 3.1. Neurovascular Niche
  • 3.2. Oligovascular Niche
  • 4. Cell-Cell Interaction in Disease
  • 5. Conclusion
  • References
  • Chapter 9: Development and pathological changes of neurovascular unit regulated by hypoxia response in the retina
  • 1. Introduction
  • 2. Hypoxia Response: Hypoxia-Inducible Factor and von Hippel-Lindau Protein
  • 3. Development of the Ocular Circulatory System
  • 4. Pathophysiology of Retinal Diseases and Hypoxia Response
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter 10: Neurovascular coupling and energy metabolism in the developing brain
  • 1. Introduction
  • 2. Functional Imaging of the Developing Brain
  • 2.1. Imaging Techniques
  • 2.2. Human Studies of Infant Hemodynamic Responses
  • 2.2.1. Observations of negative BOLD responses in the infant brain
  • 2.2.2. Observations of positive BOLD in the newborn infant brain
  • 2.3. Rodent Studies of Postnatal Neurovascular Coupling
  • 2.4. Autoregulation as a Potential Confound
  • 2.5. A Possible Role for Neurovascular Development
  • 3. Postnatal Development of Neurovascular Cells and Structures
  • 3.1. Postnatal Development of Neural Structure and Function
  • 3.2. Postnatal Development of the Brain Vasculature
  • 3.2.1. Capillaries
  • 3.2.2. Arteries
  • 3.2.3. Resting vascular tone
  • 3.3. Astrocytes
  • 3.4. Pericytes
  • 4. The Newborn Brain's Unique Metabolic Environment
  • 4.1. Fetal Hemoglobin
  • 4.2. Neurovascular Co-development?
  • 5. Conclusions
  • 5.1. A Role in Normal and Abnormal Development?
  • 5.2. Implications for Future Functional Imaging Studies
  • 5.2.1. Functional imaging during stimulation
  • 5.2.2. Resting state functional connectivity mapping
  • 5.3. A Look to the Future
  • Acknowledgments
  • References
  • Chapter 11: Exercise and cerebrovascular plasticity
  • 1. Introduction
  • 2. Changes in CBF During Exercise
  • 3. Regulation of CBF During Exercise
  • 4. NVC During Exercise
  • 5. Effects of Regular Exercise on the Brain Function
  • 5.1. Why It Does Matter?
  • 5.2. Effects of Regular Exercise on Neuronal Plasticity
  • 5.3. Effects of Regular Exercise on Cerebrovascular Plasticity
  • 5.4. Opposing Effects of Aging and Regular Exercise on the Neuronal and Cerebrovascular Plasticity
  • 6. Neurotrophic Coupling, a Possible Modulator of Exercise Effects on the Brain
  • 7. Conclusions and Perspective
  • References
  • Chapter 12: Neurovascular coupling-What next?
  • 1. Conference History on a Topic of NVC
  • References
  • Index
  • Other volumes in Progress in Brain Research
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

245,14 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok