Hydrodynamics and Transport for Water Quality Modeling

 
 
CRC Press
  • erschienen am 4. Mai 2018
  • |
  • 816 Seiten
 
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-1-351-43988-6 (ISBN)
 
Hydrodynamics and Transport for Water Quality Modeling presents a complete overview of current methods used to describe or predict transport in aquatic systems, with special emphasis on water quality modeling. The book features detailed descriptions of each method, supported by sample applications and case studies drawn from the authors' years of experience in the field. Each chapter examines a variety of modeling approaches, from simple to complex. This unique text/reference offers a wealth of information previously unavailable from a single source.

The book begins with an overview of basic principles, and an introduction to the measurement and analysis of flow. The following section focuses on rivers and streams, including model complexity and data requirements, methods for estimating mixing, hydrologic routing methods, and unsteady flow modeling. The third section considers lakes and reservoirs, and discusses stratification and temperature modeling, mixing methods, reservoir routing and water balances, and dynamic modeling using one-, two-, and three-dimensional models. The book concludes with a section on estuaries, containing topics such as origins and classification, tides, mixing methods, tidally averaged estuary models, and dynamic modeling. Over 250 figures support the text.

This is a valuable guide for students and practicing modelers who do not have extensive backgrounds in fluid dynamics.
  • Englisch
  • Boca Raton
  • |
  • USA
Taylor & Francis Ltd
  • Für höhere Schule und Studium
898 equations, 75 schwarz-weiße Tabellen
  • 59,14 MB
978-1-351-43988-6 (9781351439886)
weitere Ausgaben werden ermittelt
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Authors
  • Acknowledgments
  • Preface
  • Table of Contents
  • Part I: Fundamentals
  • 1: Fundamental Relationships for Flow and Transport
  • I. Mechanistic Versus Empirical Modeling
  • II. General Principles
  • A. Laws of Conservation
  • B. Extrinsic Versus Intrinsic Properties
  • C. Net Accumulation: Application of the Laws of Conservation
  • D. Control Volumes
  • Ill. Physical Properties of Water
  • A. Density and Specific Weight
  • B. Compressibility
  • C. Newtonian Fluids and Molecular Viscosity
  • D. Molecular Diffusivity
  • IV. Instantaneous Equations for Fluid Flow and Transport
  • A. Fundamental Form of the Conservation Equations
  • B. Instantaneous Equation for Continuity of Water
  • C. Instantaneous Equations for the Conservation of Momentum
  • D. Instantaneous Equations for the Conservation of Constituent Mass or Thermal Energy
  • V. Reynolds Trme-Averaged Mean Flow and Transport Equations
  • A. Turbulent Motion
  • B. Statistical Relationships
  • C. Turbulence Closure
  • VI. Model Complexity: Selection and Development
  • A. Model Resolution
  • 1. Scales of Interest
  • 2. Time Variation
  • 3. Spatial Dimensions for Solving the Governing Equations
  • 4. Methods to Simulate the Water Surface
  • 5. Turbulence Parameterization
  • 6. Forcing Functions or Sources and Sinks
  • a. Water Mass
  • b. Momentum
  • c. Constituent Mass
  • B. Solution Techniques
  • 1. Analytical Solutions
  • 2. Numerical Solution Techniques
  • Vll. Data Requirements
  • A. Boundary Conditions
  • B. Initial Conditions
  • C. Data for Model Application and Evaluation
  • 1. Statistical Tests of Paired Observations and Simulations
  • 2. Sensitivity Analysis
  • 3. Error Analysis
  • D. Data for Evaluation of Environmental Control
  • VIII. Definitions
  • IX. Dimensionless Numbers
  • 2: Measurement and Analysis of Flow
  • I. lntroduction
  • II. Measurement of Velocity and Flow
  • A. Float Methods
  • B. Current Meters
  • 1. Mechanical Current Meters
  • 2. Acoustic Current Measurement
  • 3. Electromagnetic Current Measurement
  • 4. Deployment of Current Meters
  • C. Flow Measurement at Control Structures
  • D. Remote Sensing
  • III. Measurement of Stage
  • IV. Computation of Discharge
  • V. Tracer Studies
  • A. Measurement of Fluorescent Dyes
  • B. Properties of Fluorescent Dyes
  • 1. Temperature Effects
  • 2. Background Interference
  • 3. Sorption
  • 4. pH Effects
  • 5. Photodegradation
  • 6. Chemical Reactions and Quenching
  • 7. Density Effects
  • 8. Toxicity
  • C. Types of Dye Studies
  • 1. Instantaneous Release
  • 2. Continuous Release
  • D. Planning Dye Studies
  • 1. Estimating Mean Velocities
  • 2. Mixing Considerations
  • 3. Estimating the Quantity of Dye Releases
  • 4. Determining Locations of Sampling Stations
  • VI. Estimating Design Flows
  • A. Design Conditions for Dynamic Flows
  • B. Design Conditions for Steady Flows
  • 1. Extreme-Value-Based Design Flows
  • a. Distribution-Free Method
  • b. Known or Estimated Probability Distribution
  • 2. Biologically Based Design Flows
  • References
  • Symbols Used in Part I
  • Problems
  • Appendixes
  • I.A Physical Properties of Water
  • I.B Unit Conversion Factors
  • I.C Values of Frequency Factor K for Use in the Log Pearson Type III Distribution for Low-Flow Analyses
  • I.D Values of Frequency Factor K for Use in the Log Pearson Type III Distribution for High-Flow Analyses
  • I.E Standard Variant z, Associated with Typical Return Intervals
  • Part II: Rivers and Streams
  • 3: Flow Models for Rivers and Streams
  • I. Introduction
  • II. Flow Model Complexity
  • A. Spatial and Temporal Resolution
  • B. Complexity of Governing Equations
  • III. Data Requirements
  • A. Boundary Conditions
  • B. Channel Geometry
  • C. Bottom Roughness
  • D. Model Calibration and Evaluation
  • IV. Estimating Mixing in Streams and Rivers
  • A. Methods Based on Shear Stresses
  • B. Methods Based on Tracer Studies
  • C. Estimating Mixing Lengths
  • 4: Non-Hydraulic Methods for Flow Estimation
  • I. Flow Relationships
  • II. Hydrologic Routing Methods
  • A. Empirical Techniques
  • B. Hydrographic Theory
  • C. Hydrographic Relationships
  • D. Methods Based on Continuity
  • 5: Hydraulic Methods for Steady Flows
  • I. Steady, Uniform Flows
  • A. The Chezy Equation
  • B. The Manning Equation
  • C. Simulating Frictional Resistance Using the Manning Equation
  • II. Hydraulic Methods for Steady, Nonuniform Flows
  • A. Bernoulli Energy Equation Modified for Friction Losses
  • B. Classification of Flow Regimes
  • 1. Normal and Critical Flow Conditions
  • 2. Froude Number
  • 3. Hydraulic Jump
  • 4. Classification of Water Surface Profiles
  • C. Energy Losses and Momentum Corrections
  • 1. Friction Losses in Steady, Nonuniform Flow
  • 2. Minor Losses
  • 3. Kinetic Energy Corrections
  • D. Application of Nonuniform Flow Concepts
  • 1. The Step Method
  • 2. Iterative Solution
  • 6: Hydraulic Methods for Unsteady Flows
  • I. Introduction
  • II. Solution Techniques
  • A. Method of Characteristics
  • B. Finite-Difference Methods
  • C. Finite-Element Methods
  • D. Numerical Properties
  • E. Boundary and Initial Conditions
  • Ill. Unsteady-Flow Methods
  • IV. Kinematic-Wave Model
  • A. Exact Solution
  • B. Numerical Solution: Backward Finite-Difference Approach
  • 7: Solutions of Complete Unsteady Flow Models
  • I. Explicit Solution of a Link-Node Model
  • A. Description of the Method
  • B. Solution Technique
  • C. Example Applications
  • D. Linkage with Water Quality Models
  • II. Implicit Solution Using the Four-Point Method
  • A. Numerical Scheme
  • B. Solution Technique
  • C. Examples of Implicit Models
  • D. Linkage with Water Quality Models
  • References
  • Symbols Used in Part II
  • Problems
  • Part III: Lakes and Reservoirs
  • 8: Stratification and Heat Transfer in Lakes and Reserooirs
  • I. Introduction to Lakes and Reservoirs
  • II. Origin and Characteristics of Lakes and Reservoirs
  • A. Origin of Lakes
  • B. Size and Number
  • C. Water Use and Reservoir Purpose
  • D. Important Lentic Zones and Shoreline Conditions
  • E. Hydraulic Retention Time
  • III. Stratification in Lakes and Reservoirs
  • A. Stratification Cycle
  • B. Classification of Lakes and Reservoirs Based on Stratification
  • C. Stratification Potential
  • IV. Temperature Simulation
  • A. Full Heat Balance
  • 1. Short-Wave Radiation
  • 2. Long-Wave Radiation
  • 3. Back Radiation from Lakes and Reservoirs
  • 4. Evaporation
  • 5. Conduction and Convection
  • B. Beer's Law and the Solar Radiation Penetration
  • C. Equilibrium Temperature Method
  • 1. Use of Equilibrium Temperature to Solve for the Heat Flux
  • 2. Coefficient of Heat Exchange
  • 3. Other Methods
  • D. Data Requirements
  • V. Ice Formation and Cover
  • A. Ice Formation
  • B. Light Penetration Through Ice and Snow
  • C. Thickening of the Ice Cover
  • D. Lake Ice Decay
  • 9: Mixing in Lakes and Reservoirs
  • I. Introduction
  • II. Inflow Mixing Processes
  • A. Characteristics of Inflow Mixing
  • B. Analysis of Inflows
  • 1. Plunge or Separation Point
  • 2. Thickness and Width of Overflow
  • 3. Underflow Mixing
  • 4. Interflows
  • Ill. Outflow Mixing Processes
  • A. Characteristics of Outflow Mixing Processes
  • B. Analysis of Outflow Processes
  • IV. Mixing by Wind, Waves, Convective Cooling, and Coriolis Forces
  • A. Progressive Surface Waves
  • C. Convective Mixing
  • B. Langmuir Circulation
  • E. Earth's Rotation-the Coriolis Force
  • D. Internal Waves, Seiches and Upwelling
  • V. Reservoir Management and Mixing Processes
  • 10: Water Balances and Multidimensional Models
  • I. lntroduction
  • ll. Water Balance for Lakes and Reservoirs
  • A. Components of the Water Balance
  • 1. Storage
  • 2. Inflow and Outflow Measurements
  • 3. Direct Precipitation onto the Lake Surface
  • 4. Evaporation
  • 5. Groundwater Seepage and Infiltration
  • B. Reservoir Routing Methods
  • Ill. Zero-Dimensional or Box Models of Lake and Reservoir Quality
  • IV. One-Dimensional, Longitudinal Models of Lakes and Reservoirs
  • V. One-Dimensional, Vertical Models of Lakes and Reservoirs
  • A. Mixed Layer Models
  • B. Vertical Turbulent Diffusion Models
  • 1. Empirical Expressions
  • 2. Dye or Tracer Studies to Determine Vertical Mixing
  • VI. Two-Dimensional (Laterally Averaged) Models
  • A. Box Model Approach
  • B. Hydrodynamic and Mass Transport Models
  • VII. Two-Dimensional Depth Averaged Models
  • VIII. Three-Dimensional Models
  • References
  • Symbols Used in Part III
  • Problems
  • Part IV: Estuaries
  • 11: Introduction to Estuaries
  • I. Introduction
  • II. General Characteristics of Estuaries
  • A. Chemical Characteristics
  • B. Density
  • C. Tides and the Salt-Wedge Estuary
  • Ill. Classification Schemes
  • A. Geomorphology
  • B. Degree of Stratification
  • 12: Factors Affecting Transport and Mixing in Estuaries
  • I. Introduction
  • II. Tides
  • A. Tidal Amplitudes
  • B. Tidal Currents
  • III. The Coriolis Force
  • IV. Freshwater Inflow
  • V. Meteorological Effects
  • VI. Bathymetry
  • VII. Model Complexity
  • A. Spatial and Temporal Resolution
  • 1. Spatial Resolution
  • 2. Temporal Resolution
  • B. Complexity of Governing Equations
  • 13: Turbulent Mixing and Dispersion in Estuaries
  • I. Eddy Viscosity and Eddy Diffusivity
  • A. Formulation of Coefficients
  • B. The Closure Problem
  • 1. Zero-Equation Closure
  • 2. One-Equation Closure
  • 3. Two-Equation Closure
  • 4. Turbulent Stress and Flux Equation Oosure
  • ll. Dispersion in Estuaries
  • Ill. Estimation of Mixing Tenns
  • A. Eddy Viscosity and Eddy Diffusivity
  • B. Dispersim
  • 14: Tidally Averaged Estuarine Models
  • I. Introduction
  • II. Fraction of Freshwater Method
  • III. Modified Tidal Prism Method
  • IV. Pritchard's Method
  • V. Lung and O'Connor's Method
  • VI. Computing Tidal Transport from Measured or Predicted Velocities
  • A. Computing Tidally Averaged Advection and Dispersion
  • 1. Computing Tidally Averaged Advection
  • 2. Computing Tidally Averaged Dispersion
  • 3. Numerical Diffusion
  • B. Spatial Averaging of Fine Scale Intra tidal Simulations
  • C. The Lagrangian Transport Equation
  • D. Computing the Stokes Drift
  • E. A Final Note on Tidal Averaging
  • 15: Dynamic Modeling Of Estuaries
  • I. Introduction
  • II. Factors That Distinguish Modeling Approaches
  • A. Forces and Boundary Conditions
  • 1. Riverine Boundary Conditions
  • 2. Open Water Boundary Conditions
  • 3. Forces Due to the Coriolis Effect, Atmospheric Pressure, Barotropic Setup, and Baroclinic Pressure
  • 5. Bottom Boundary Conditions
  • 4. Water Surface Conditions
  • 6. Shoreline Conditions
  • B. Dimensionality
  • C. Grid Structure
  • 1. Horizontal Finite Difference Grids
  • a. Rectangular Grids with Fixed-Grid Spacing
  • b. Stretched Rectangular Grids
  • c. Curvilinear Boundary-Fitted Coordinate Systems
  • d. Adaptive Grids
  • 2. Vertical Coordinate Systems
  • a. Cartesian Vertical Coordinate
  • b. Stretched Grid
  • c. Isopycnic Coordinate System
  • 3. Finite Element Grids
  • D. Numerical Solution Scheme
  • Ill. One-Dimensional Models Of Estuaries
  • A. Examples of Available Models
  • 1. Branch-Network Flow Model
  • 2. CE-QUAL-RIV1
  • 3. Dynamic Estuary Model (DEM)
  • 4. EXPLORE-1
  • 5. MIT Transient Water Quality Network Model
  • B. Case Study
  • IV. Two-Dimensional (Horizontal Plane) Models
  • A. Examples of Available Models
  • 1. TABS-MD and RMA2-WES
  • 2. WIFM-SAL
  • 3. HSCTM-20
  • 4. FESWMS-2DH
  • 5. Tidal, Residual, Intertidal Mudflat Model
  • 6. SIMSYS2D or SWIFT2D
  • 7. CAFEX
  • 8. H.S. Chen's Model
  • 9. PETRA, Sediment-Contaminant Transport Model
  • 10. NELEUS
  • 11. SEDZL
  • 12. Other Models
  • B. Case Study
  • V. Two-Dimensional (Vertical Plane) Models
  • A. Examples of Available Models
  • 1. CE-QUAL-W2
  • 2. Blumberg's Model
  • B. Case Study
  • VI. Three-Dimensional Models
  • A. Examples of Available Models
  • 1. CH3D/CH3D-WES
  • 2. EHSM3D
  • 3. John Paul's Hydrodynamic Model
  • 4. ECOM-30/POM
  • 5. Model for Estuarine and Coastal Circulation and Assessment (MECCA)
  • 6. EFDC/HEM3D
  • 7. HOTDIM
  • 8. RMA Models
  • 9. TEMPEST
  • B. Case Study
  • Vll. Coupling Flow and Water Quality Models
  • A. Directly Linked Models
  • B. Indirect Linkage
  • References
  • Symbols Used in Part IV
  • Problems
  • Appendixes
  • IV.A. Node Factors(fi) at the Middle of Each Calendar Year (1990-2029)
  • IV. B. Equilibrium Argument (Vo + ao) for the Greenwich Meridian at the Beginning of Each Calendar Year (1990-2029)
  • lndex

Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

104,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen