Mechanochemical Organic Synthesis

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 23. April 2016
  • |
  • 386 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-802525-3 (ISBN)
 

Mechanochemical Organic Synthesis is a comprehensive reference that not only synthesizes the current literature but also offers practical protocols that industrial and academic scientists can immediately put to use in their daily work. Increasing interest in green chemistry has led to the development of numerous environmentally-friendly methodologies for the synthesis of organic molecules of interest. Amongst the green methodologies drawing attention, mechanochemistry is emerging as a promising method to circumvent the use of toxic solvents and reagents as well as to increase energy efficiency.

The development of synthetic strategies that require less, or the minimal, amount of energy to carry out a specific reaction with optimum productivity is of vital importance for large-scale industrial production. Experimental procedures at room temperature are the mildest reaction conditions (essentially required for many temperature-sensitive organic substrates as a key step in multi-step sequence reactions) and are the core of mechanochemical organic synthesis. This green synthetic method is now emerging in a very progressive manner and until now, there is no book that reviews the recent developments in this area.


  • Features cutting-edge research in the field of mechanochemical organic synthesis for more sustainable reactions
  • Integrates advances in green chemistry research into industrial applications and process development
  • Focuses on designing techniques in organic synthesis directed toward mild reaction conditions
  • Includes global coverage of mechanochemical synthetic protocols for the generation of organic compounds


Dr. Davor Margeti? is senior research scientist and acting head of the division of organic chemistry and biochemistry at Ru?er Bo?kovi? research Institute in Zagreb, Croatia. He is the head of the laboratory for physical organic chemistry and Professor of physical organic chemistry at Rijeka University.He graduated with a degree in chemical engineering at Zagreb University and continued in the field of organic syntheses with Ms.Sc. and Ph.D. studies in the field of theoretical and physical organic chemistry (Zagreb). The completion of his Ph.D. was followed by a postdoctoral research studies at the Centre for Molecular Architecture, Central Queensland University, Australia. There he worked with Professors Ronald Warrener and Doug Butler for 9 years (synthetic organic and computational chemistry). In 2002, he returned to Croatia to take up a position at RBI, and in 2009 he was promoted to senior research scientist (an equivalent of full professor at the university). Research interests of Dr. Margeti? include the synthesis and investigation of theoretically interesting molecules, the study of reaction mechanisms, computational organic chemistry, and the development of environmentally-friendly organic reactions using novel techniques (extreme high pressures, microwave irradiation, and mechanochemistry). During his scientific career, Dr. Margeti? has published 90 research papers, 42 electronic conference papers, and 9 book chapters. He has authored one book: 'Microwave Assisted Cycloaddition Reactions' with Nova Science Publishers, New York (2011); and edited two books: Croatica Chemica ActA Special issue dedicated to the 70th birthday of Professor Z. B. Maksi? (2009), and Special issue dedicated to 70th birthday of Professor M. Eckert-Maksi? (2014).
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 11,94 MB
978-0-12-802525-3 (9780128025253)
0128025255 (0128025255)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Mechanochemical Organic Synthesis
  • Mechanochemical Organic Synthesis
  • Copyright
  • Contents
  • Preface
  • List of Abbreviations
  • 1 - Practical Considerations in Mechanochemical Organic Synthesis
  • 1.1 A HISTORICAL PERSPECTIVE
  • 1.2 MODERN LABORATORY INSTRUMENTATION FOR MECHANOSYNTHESIS
  • 1.2.1 PLANETARY BALL MILLS
  • 1.2.2 MIXER (SHAKER) BALL MILLS
  • 1.2.3 CUSTOM-MADE BALL MILLS
  • 1.2.4 MILLING PARAMETERS
  • 1.3 CONTAMINATION FROM WEAR IN ORGANIC MECHANOSYNTHESIS
  • 1.4 ANALYSIS AND MONITORING OF MECHANOCHEMICAL REACTIONS
  • 1.4.1 ANALYTICAL METHODS IN ORGANIC SOLID-STATE CHEMISTRY
  • 1.4.2 MONITORING OF MECHANOCHEMICAL REACTIONS
  • 1.4.2.1 Ex Situ Monitoring
  • 1.4.2.2 In Situ Monitoring
  • REFERENCES
  • 2 - Carbon-Carbon Bond- Forming Reactions
  • 2.1 HECK COUPLING
  • 2.2 SUZUKI COUPLING
  • 2.3 SONOGASHIRA COUPLING
  • 2.4 GLASER COUPLING
  • 2.5 MICHAEL REACTION
  • 2.5.1 ASYMMETRIC MICHAEL REACTION
  • 2.6 ALDOL CONDENSATION
  • 2.6.1 ASYMMETRIC ALDOL CONDENSATION
  • 2.7 MORITA-BAYLIS-HILLMAN REACTION
  • 2.8 KNOEVENAGEL CONDENSATION
  • 2.9 BARBIER ALLYLATION
  • 2.10 GEWALD REACTION
  • 2.11 PINACOL REACTION
  • 2.12 GRIGNARD AND MCMURRY REACTIONS
  • 2.13 GRIGNARD-ZEREWITINOFF-LIKE REACTION
  • 2.14 WITTIG REACTION
  • 2.15 HORNER-WADSWORTH-EMMONS REACTION
  • 2.16 ASYMMETRIC ALKYLATION
  • 2.17 OLEFIN CROSS-METATHESIS
  • 2.18 CROSS-DEHYDROGENATIVE COUPLING
  • 2.19 REFORMATSKY REACTION
  • 2.20 CASCADE REACTIONS
  • 2.20.1 PORPHYRIN SYNTHESIS
  • 2.20.2 NINHYDRIN CONDENSATIONS
  • 2.21 ARYLAMINOMETHYLATION
  • 2.22 NAPHTHOPYRAN SYNTHESIS
  • REFERENCES
  • 3 - Carbon-Nitrogen Bond-Formation Reactions
  • 3.1 1,2-DIONE/DIAMINE CONDENSATION
  • 3.2 SYNTHESIS OF IMINES
  • 3.3 SYNTHESIS OF (THIO)SEMICARBAZONES
  • 3.4 SYNTHESIS OF OXIMES
  • 3.5 SYNTHESIS OF HYDRAZONES
  • 3.6 SYNTHESIS OF AZINES
  • 3.7 AMIDE AND THIOAMIDE BOND FORMATION
  • 3.7.1 COUPLING OF ACTIVATED ACIDS AND AMINES
  • 3.7.2 ADDITION OF CUMULENES TO AMINES
  • 3.7.3 OXIDATIVE AMIDATION
  • 3.7.4 NUCLEOPHILIC ADDITION OF CARBOXYLATE
  • 3.7.5 CARBAMATE NITROGEN PROTECTION
  • 3.7.6 SYNTHESIS OF IMIDES
  • 3.8 SYNTHESIS OF NITRONES
  • 3.9 SYNTHESIS OF ENAMINES AND ENAMINE KETONES
  • 3.10 ALKYLATION OF NITROGEN
  • 3.11 SYNTHESIS OF BIGUANIDES AND GUANIDINES
  • 3.12 ADDITIONS TO DOUBLE AND TRIPLE BONDS
  • 3.12.1 AZA-MICHAEL REACTION
  • 3.12.2 AMINOHALOGENATION OF OLEFINS
  • 3.12.2.1 Aminochlorination of Olefins
  • 3.12.2.2 Aminobromination of Olefins
  • 3.12.3 INTRAMOLECULAR HYDROAMINATION
  • 3.12.4 ADDITIONS TO IMINE BOND
  • 3.13 SUBSTITUTION REACTIONS
  • 3.14 N-ARYLATION OF AMINES
  • 3.15 BIGINELLI REACTION
  • 3.16 NITROSO BOND FORMATION/DISSOCIATION
  • REFERENCES
  • 4 - CarbondOxygen and Other Bond-Formation Reactions
  • 4.1 CDO BOND FORMATION REACTIONS
  • 4.1.1 SYNTHESIS OF ETHERS
  • 4.1.1.1 Glycosylation
  • 4.1.1.2 O-Protection
  • 4.1.1.3 Cyclodehydration
  • 4.1.1.4 Epoxides
  • 4.1.2 ESTERS
  • 4.1.2.1 Alkylation
  • 4.1.2.2 Decarboxylative Esterification
  • 4.1.2.3 Transesterification
  • 4.1.2.4 Anhydride Ring Opening
  • 4.1.2.5 Tishchenko Reaction
  • 4.1.2.6 Acylation
  • 4.2 SULFUR BOND FORMATION REACTIONS
  • 4.2.1 ALKYLATION
  • 4.2.2 HANTZSCH REACTION
  • 4.2.3 NINHYDRIN CONDENSATION
  • 4.2.4 FORMATION OF CDS, CDSE, AND CDTE BONDS FROM DICHALCOGENIDES
  • 4.2.5 FORMATION OF SULFILIMINE BOND
  • 4.2.6 SDS BOND METHATHESIS
  • 4.3 HALOGEN BOND FORMATION REACTIONS
  • 4.3.1 AROMATIC SUBSTITUTION
  • 4.3.2 BENZYLIC BROMINATION: WOHL-ZIEGLER REACTION
  • 4.3.3 NUCLEOPHILIC SUBSTITUTION
  • 4.3.4 IODOKETONES IN HANTZSCH PYRROLE SYNTHESIS
  • 4.3.5 OXIDATIVE HALODECARBOXYLATION
  • 4.3.6 DECHLORINATION
  • 4.4 PHOSPHORUS BOND FORMATION REACTIONS
  • 4.5 BORON BOND FORMATION REACTIONS
  • 4.6 SILICON BOND FORMATION REACTIONS
  • 4.7 BISMUTH BOND FORMATION REACTIONS
  • 4.8 CDH BOND FORMATION: HYDROGENATION
  • 4.9 MULTISTEP MECHANOCHEMICAL REACTION
  • REFERENCES
  • 5 - Cycloaddition Reactions
  • 5.1 DIELS-ALDER REACTION
  • 5.2 1,3-DIPOLAR CYCLOADDITIONS
  • REFERENCES
  • 6 - Oxidations and Reductions
  • 6.1 OXIDATIONS
  • 6.1.1 OXIDATION OF ?-PINENE
  • 6.1.2 OXIDATION TO KETONES
  • 6.1.3 OXIDATIVE DEHYDROGENATION OF G-TERPINENE
  • 6.1.4 OXIDATION OF P-TOLUIDINE
  • 6.1.5 OXIDATION OF P-ANILINES TO NITROSOBENZENES
  • 6.1.6 OXIDATION OF 1,2,3-TRIMETHOXYBENZENE TO P-QUINONE
  • 6.1.7 OXIDATION OF ALCOHOLS
  • 6.1.8 OXIDATION OF ALDEHYDES
  • 6.1.9 OXIDATION OF SULFIDES AND THIOPHENES TO SULFONES
  • 6.1.10 OXIDATION OF THIOLS TO DISULFIDES
  • 6.1.11 DITHIANE DEPROTECTION
  • 6.1.12 OXIDATION OF AMINES TO IMINES
  • 6.1.13 TRANSFORMATION OF OLEFINS TO ?-HALOKETONES
  • 6.1.14 OXIDATION OF PORPHYRINS
  • 6.1.15 ACHMATOWICZ REARRANGEMENT
  • 6.1.16 OXIDATION OF LAPPACONITINE
  • 6.1.17 OXIDATION OF ?-ARYLACRYLIC ACIDS
  • 6.2 REDUCTIONS
  • 6.2.1 REDUCTION OF P-SUBSTITUTED ALDEHYDES, KETONES, AND ESTERS
  • 6.2.2 REDUCTION OF ALDEHYDES AND KETONES
  • 6.2.3 REDUCTION OF NITROARENES
  • REFERENCES
  • 7 - Applications of Ball Milling in Nanocarbon Material Synthesis
  • 7.1 FUNCTIONALIZATION OF FULLERENES
  • 7.1.1 CYCLOADDITION REACTIONS
  • 7.1.2 OTHER FULLERENE REACTIONS
  • 7.1.2.1 Oxygenation of Fullerene
  • 7.2 FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES
  • 7.3 FUNCTIONALIZATION OF GRAPHENES
  • REFERENCES
  • 8 - Applications of Ball Milling in Supramolecular Chemistry
  • 8.1 ROTAXANES
  • 8.2 COMPLEXATION OF FULLERENES
  • REFERENCES
  • 9 - Experiments for Introduction of Mechanochemistry in the Undergraduate Curriculum
  • 9.1 GREEN CHEMISTRY AT THE UNIVERSITY LEVEL
  • 9.2 SELECTED EXPERIMENTS
  • 9.2.1 SUZUKI COUPLING [5]
  • 9.2.1.1 4-Phenyltoluene (3)
  • 9.2.2 RH-CATALYZED CRH FUNCTIONALIZATION [6]
  • 9.2.2.1 Di-µ-chloro-dichlorobis(?5-pentamethylcyclopentadienyl)dirhodium(III) (5)
  • 9.2.2.2 2-(2,6-Diiodophenyl)pyridine (8)
  • 9.2.3 IMINE (SCHIFF BASE) SYNTHESIS AND METAL COMPLEXATION [7]
  • 9.2.3.1 2,2´-[1,2-Ethanediylbis[(E)-nitrilomethylidyne]]bis-phenol (11)
  • 9.2.3.2 2,2´-[1,2-Ethanediylbis[(E)-nitrilomethylidyne]]-bis[phenolato]-?N,N´,O,O´-zinc(II) (12)
  • 9.2.3.3 "All-at-Once Synthesis" of Zn Complex 12
  • 9.2.4 AMIDE SYNTHESIS [8]
  • 9.2.4.1 N-phenethylbenzamide (15)
  • 9.2.5 DESYMMETRIZATION OF PHENYLENEDIAMINE: (THIO)UREA SYNTHESIS [9]
  • 9.2.5.1 N1-(2-Aminophenyl)-N2-(4-chlorophenyl)thiourea (18)
  • 9.2.5.2 N1-[N-(4-Chlorophenyl)thiocarbamoyl]-N2-[N-phenylcarbamoyl]-1,2-diaminobenzene (20)
  • 9.2.6 DIELS-ALDER REACTION [10]
  • 9.2.6.1 Endo-4-anisyl-4-aza-tricyclo[5.2.1.02,6]-?dec-8-ene-3,5-dione (23)
  • REFERENCES
  • Author Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Subject Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok