Hydrodynamics and Transport Processes of Inverse Bubbly Flow

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 31. März 2016
  • |
  • 462 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-803288-6 (ISBN)
 

Hydrodynamics and Transport Processes of Inverse Bubbly Flow provides the science and fundamentals behind hydrodynamic characteristics, including flow regimes, gas entrainment, pressure drop, holdup and mixing characteristics, bubble size distribution, and the interfacial area of inverse bubble flow regimes. Special attention is given to mass and heat transfer.

This book is an indispensable reference for researchers in academia and industry working in chemical and biochemical engineering. Hydrodynamics and Transport Processes of Inverse Bubbly Flow helps facilitate a better understanding of the phenomena of multiphase flow systems as used in chemical and biochemical industries.


  • A first book in the market dedicated to the hydrodynamics of inverse bubbly flows
  • Includes fundamentals of conventional and inverse bubble columns for different hydrodynamic parameters
  • Includes recommendations for future applications of bubble flows


Dr. Subrata Kumar Majumder is an Associate Professor in the Chemical Engineering Department at the Indian Institute of Technology Guwahati, India. He completed his PhD in Chemical Engineering from the Indian Institute of Technology Kharagpur. His research interests include multiphase flow and reactor development, hydrodynamics in multiphase flow, mineral processing, process intensifications, and micro-nano bubble science and technology and its applications. He is a recipient of various honors and awards, including the IIME award on mineral beneficiation from Indian Institute of Mineral Engineers (IIME). He serves as an editorial board member of the journal Science and Technology, Scientific and Academic Publishing, USA, an advisory board member of Excelling Tech Publishers (ETP), London, UK, an editorial member of the Journal of Chemical Engineering Research Studies, and an editorial board member of the Scientific Journal of Materials Science. He is a life member of the Indian Institute of Chemical Engineers, a life member of the Indian Institute of Mineral Engineers, a member of the Institute of Engineers (India), a member of Asia-Pacific Chemical, Biological & Environmental Engineering Society (PCBEE), and a senior member of the International Association of Engineers (IAE), Japan. He's published more than 60 articles in several reputed international journals. He has completed several sponsored and consultancy projects. Presently he is working in the field of microbubble science and technology and its applications in mineral beneficiation, arsenic, ammonia and dye removal and process intensifications by developing ejector-induced gas-aided extraction processes.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 18,16 MB
978-0-12-803288-6 (9780128032886)
012803288X (012803288X)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • Preface
  • Acknowledgment
  • 1 Introduction
  • Bubbly Flow
  • Typical Features of Bubbly Flow
  • Types of Gas-Liquid Contacting Devices
  • Bubbly Flow Device
  • Importance of Bubbly Flow Devices
  • Types of Bubbly Flow Devices
  • Different Types of Modified Bubbly Flow Devices
  • Inverse Bubbly Flow Device
  • Practical Applications of Inverse Bubbly Flow
  • References
  • 2 Flow Regime and Its Transition
  • Nomenclature
  • Flow Regime
  • Flow Regimes in a Conventional Bubbly Flow Reactor
  • Homogeneous or Dispersed Bubbly Flow Regime
  • Heterogeneous or Churn-Turbulent Bubbly Flow Regime
  • Slug Bubbly Flow Regime
  • Flow Regimes in Inverse Bubbly Flow Reactors
  • Flow Regime Map and Its Transition
  • Methods for Identification of Flow Regime Transition
  • Visual Observation
  • Evolution of Global Hydrodynamic Parameters
  • Temporal Signatures of Quantity Related to Hydrodynamics
  • Advanced Measurement Techniques
  • Factors Influencing Formation and Stability of Flow Regime Transitions
  • Effect of Operating Pressure and Temperature
  • Effect of Physical Properties of Fluid
  • Effect of Liquid Viscosity
  • Effect of Gas Density
  • Effect of Surface-Active Agent
  • Effect of the Geometrical Variables
  • Effect of Gas Distributor
  • Effect of Column Size
  • Theories on Prediction of Flow Regime Transition
  • Empirical Method
  • Phenomenological Method
  • Stability Theory
  • Computational Fluid Dynamics
  • Artificial Neural Network Method
  • Procedure to Predict Two-Phase Flow Regime Using an Artificial Neural Network
  • MATLAB Algorithm to Use an Artificial Neural Network
  • References
  • 3 Entrainment of Gas Bubbles
  • Nomenclature
  • Greek Letters
  • Entrainment of Gas Bubbles
  • Mechanism of Gas Entrainment
  • Estimation of Entrained Gas for Inverse Bubbly Flow
  • Effect of Variables on Gas Entrainment for Inverse Bubbly Flow
  • Depth of Bubble Penetration Due to Gas Entrainment
  • Minimum Entrainment Velocity
  • Energy Efficiency of Gas Entrainment
  • Axial Distribution of Kinetic Energy Utilization for Gas Entrainment
  • Models of Entrainment Rate
  • Future Scope
  • References
  • 4 Hold-up Characteristics of Gas Bubbles
  • Bubble Phase Hold-up: Definition and Profile
  • Definition of Bubble Phase Hold-up
  • Profiles of Bubble Phase Hold-up
  • Radial Bubble Phase Hold-up Profile
  • The Cross-Sectional Average Bubble Phase Hold-up
  • Bubble Phase Hold-up Based on Liquid Velocity Profile
  • Axial Profile of Cumulative Bubble Phase Hold-up
  • Methods to Measure the Hold-up
  • Bubble Phase Isolation Method
  • Differential Pressure Method
  • Conductometric Method
  • Electrical Resistance Tomography
  • Dynamic Gas Disengagement Technique
  • Effect of Different Variables on Bubble Phase Hold-up
  • A Comparative Picture of Bubble Phase Hold-up
  • Models to Analyze Bubble Phase Hold-up Characteristics
  • Homogeneous Flow Model
  • Variable Density Model
  • Momentum Exchange Model
  • Lockhart-Martinelli Correlations
  • Drift-Flux Model
  • Analysis by the Slip Velocity Model
  • Kawase and Moo-Young (1987) Model
  • Model of Axial Bubble Phase Hold-up Profiles
  • General Empirical Correlation Model of Bubble Phase Hold-up
  • Nomenclature
  • References
  • 5 Pressure Drop in Bubbly Flow
  • Pressure Drop in Bubbly Flow
  • Why Knowledge on Pressure Drop Is Required
  • Models to Analyze Pressure Drop
  • Homogeneous Flow Model
  • Hydrostatic Pressure
  • Momentum Pressure
  • Frictional Pressure
  • Friction Factor in Homogeneous Two-Phase Flow
  • Separated Flow Models
  • Asymptotic Models
  • Martinelli et al. (1944) Model
  • Martinelli and Nelson (1948) Model
  • Lockhart and Martinelli (1949) Model
  • Kato (1958) Model
  • Bankoff (1960) Model
  • Davis (1963) Model
  • Aoki and Inoue (1965) Model
  • Baroczy (1966) Model
  • Chisholm (1967) Model
  • Wallis (1969) Model
  • Chawla (1972) Model
  • Chisholm (1973) Model
  • Grönnerud (1979) Model
  • Eisenberg and Weinberger (1979) Model
  • Friedel (1980) Model
  • Theissing (1980) Model
  • Chen and Spedding (1981) Model
  • Müller-Steinhagen and Heck (1986) Model
  • Gharat and Joshi (1992) Model
  • Awad and Muzychka Model
  • Sun and Mishima (2009) Model
  • Empirical Model
  • Mechanistic Models
  • Clark and Flemmer (1985a) Model
  • Majumder et al. (2007) Model
  • Numerical Models
  • Estimation of Frictional Pressure Drop in a Plunging Liquid Jet Inverse Bubbly Flow Column
  • References
  • 6 Mixing in Inverse Bubbly Flow
  • Mixing
  • Importance of Understanding Mixing in Bubbly Flow Devices
  • Methods to Quantify the Intensity of Mixing
  • Basic Concepts of Residence Time Distribution
  • Models for Residence Time Distribution
  • Dispersion Model
  • Boundary Conditions
  • Closed-Closed Boundary Condition
  • Open-Open Boundary Condition
  • Closed-Closed System Residence Time Distribution Profile
  • Open-Open System Residence Time Distribution Profile
  • Profile by Any Kind of Boundary Conditions
  • Tank-in-Series Model
  • Dispersion Model versus Tank-in-Series Model
  • Theoretical Model to Account for Both the Axial and Radial Dispersion Simultaneousely
  • Theoretical Model to Analyze the Dispersion Coeficient by the Heat Tracer
  • Experimental Guideline to Estimate the Mixing Parameter
  • Mixing by Tracing of Solid
  • Colored Tracers
  • Magnetic Tracers
  • Fluorescent Tracers
  • Mixing by Tracing of the Gas Phase
  • Mixing by Tracing of the Liquid
  • Mixing by Tracing Heat
  • Moment Method
  • Mean Residence Time
  • Variance of Residence Time Distribution
  • Limitation of the Analysis and Its Optimization
  • Effects of Variables on Liquid Mixing Intensity
  • Effect of Dynamic Variables
  • Effect of Geometric Variables
  • Effect of Physical Properties
  • Effect of Thermodynamic Variables
  • First View
  • Second View
  • Third View
  • Other Models to Interpret the Mixing in Bubbly Flow
  • Two-Bubble Class Model
  • Pure Convective Model
  • Compartmental Model
  • Two-Region Model
  • Slug-and-Cell Model
  • Velocity Ditribution Model
  • Isotropic Turbulence Model
  • Velocity Distribution Model
  • Model Equations
  • Liquid Velocity at Column Axis
  • Estimation of Parameters Db and k
  • Interpretation of the Parameters Based on Different Operating Variables
  • Effect of Gas Distributor
  • Effect of Column Diameter
  • Effect of Liquid Velocity
  • Effect of Gas Velocity
  • Condition for the Dispersion Coefficient
  • Isotropic Turbulence Model
  • Model Based on Information Entropy Theory
  • Gas Phase Mixing
  • Nomenclature
  • References
  • 7 Bubble Size Distribution and Gas-Liquid Interfacial Area
  • Nomenclature
  • Introduction
  • Bubble Size Measurement and Its Distribution
  • Measurement Techniques
  • Mean Bubble Size
  • Error Compensation for Bubble Size Measurement
  • Correction of Distortion Due to Curvature
  • Pressure and Temperature Correction
  • Maximum Bubble Size
  • Bubble Size Distribution
  • Exponential Distribution
  • Normal Distribution
  • Log-Normal Distribution
  • Gamma Distribution
  • Beta Distribution
  • Weibull Distribution
  • Analysis of Axial Bubble Size Distribution
  • Axial Number Flux Model
  • Correlation Model for Mean Bubble Size
  • Bubble Exchange Model
  • Specific Interfacial Area
  • Specific Interfacial Area in Inverse Bubbly Flow
  • Correlation Model for Interfacial Area
  • Interfacial Area Transport Modeling
  • Interfacial Area Transport Equation
  • Interpretation on Parameter on Transport Model
  • Effect of Coalescence Rate on the Phase Mixing Parameter
  • Effect of the Break-up Rate on the Phase Mixing Parameter
  • Effect of Geometric Parameters on the Phase Mixing Parameter
  • Effect of the Phase Mixing Parameter on the Interfacial Area Concentration
  • References
  • 8 Mass Transfer Characteristics
  • Nomenclature
  • Introduction
  • Gas-Liquid Mass Transport Process
  • Theories on Mass Transfer
  • Film Theory
  • Penetration Theory (Higbie,?1935)
  • Surface-Renewal Theory (Danckwerts,?1970)
  • Estimation Methods of Mass Transfer Coefficient
  • Physical Method
  • Complete Mixing Model
  • Axial Dispersion Model
  • Chemical Method
  • Absorption Rate Method
  • Danckwerts Plot Method
  • Design Criteria for Physical Mass Transfer Experiments
  • Other Methods of Estimation of Gas-Liquid Mass Transfer Coefficient in a Bubble Column
  • The Integral Method
  • The Differential Method
  • The Multiple Linear Regression Method
  • Mass Transfer Coefficient in Inverse Bubbly Flow Columns
  • Gas-Liquid Interfacial Mass Transfer
  • Wall-Liquid Mass Transfer in Inverse Bubbly Flow Columns
  • Correlation Model for the Wall-Liquid Mass Transfer Coefficient
  • Mass Transfer Efficiency in a Bubble Column
  • Effect of Different Variables on Mass Transfer Coefficient in a Bubbly Flow System
  • Effect of the Distributor
  • Effect of Column Size
  • Effect of Operating Pressure
  • Effect of System Temperature
  • Effect of Gas and Liquid Velocity
  • Effect of Bubble Size
  • Effect of Surface Tension on Mass Transfer Coefficient
  • Effect of Viscosity of Liquid
  • Effect of Diffusivity on the Mass Transfer Coefficient
  • Mass Transfer Coefficient as a Function of Energy Dissipation
  • Interfacial Mass Transport Model
  • Model by Lau et?al. (2004)
  • Cents et?al. (2005a) Model
  • Model by Singh and Majumder (2011)
  • Model Description
  • Model for Countercurrent Operation
  • Model for Cocurrent Operation
  • Information Entropy Theory to Interpret Mass Transfer Efficiency
  • A Multiple-Column Plug-Flow Model (Chen,?2012)
  • Computational Fluid Dynamics Modelling
  • Basic Equations
  • McClure et?al. (2014a, 2014b) Model
  • References
  • 9 Heat Transfer Characteristics
  • Introduction
  • Heat Transfer Mechanism in Bubbly Flow
  • Measurement of the Heat Transfer Coefficient
  • Wall-to-Bed Method (by Measurement of the Energy Input)
  • Inserted Object-To-Bed Method (by Measurement of Heat Flux)
  • Radial Average Heat Transfer Coefficient
  • Centerline Average Heat Transfer Coefficient
  • Overall and Volumetric Heat Transfer Coefficient
  • Effect of Different Variables on Heat Transfer Coefficient in Bubbly Flow
  • Effect of Gas and Liquid Velocities
  • Effect of Fluid Properties
  • Effect of Operating Pressure and Temperature
  • Effect of Particle Properties and Concentration
  • Effect of Probe Orientation
  • Effect of the Column Diameter
  • Effect of Bubble Size
  • Effect of Internals
  • Effect of Axial or Radial Location
  • Model to Assess Heat Transfer in Bubbly Flow Condition
  • General Correlation Model
  • Mechanistic Models
  • Model Based on Film Theory
  • Model Based on Penetration Theory
  • Model Based on Surface Renewal theory
  • Wasan and Ahluwalia (1969) Model
  • Deckwer (1980) Model
  • Joshi et al. (1980) Model
  • Zehner (1986) Model
  • Verma (1989) Model
  • Yang et al. (2000) Model
  • Momentum, Heat, and Mass Transfer Analogy
  • Correlation-Based Analogy of Heat and Mass Transfer
  • Nomenclature
  • Greek Letters
  • Subscripts
  • Superscripts
  • References
  • Suggestions for Further Study
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok