Artificial Intelligence in Label-free Microscopy

Biological Cell Classification by Time Stretch
 
 
Springer (Verlag)
  • erschienen am 19. April 2017
  • |
  • XXXIII, 134 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-51448-2 (ISBN)
 

This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis.

weitere Ausgaben werden ermittelt
Ata Mahjoubfar is a postdoctoral scholar in the Department of Electrical Engineering and California NanoSystems Institute at University of California Los Angeles. He received his Bachelor's and Master's degrees from University of Tehran, Iran in 2006 and 2008, respectively, and his Ph.D. degree from University of California, Los Angeles (UCLA) in 2014. He was the cofounder of OSA/SPIE student chapter at UCLA and its president in 2012. He is the author of more than 35 peer-reviewed publications, and he holds two international patents. His research interests include artificial intelligence, machine vision and learning, imaging and visualization, ultrafast data acquisition and analytics, biomedical technology, and financial engineering.
Claire Lifan Chen is a senior application engineer at Lumentum Operations LLC. She received her Ph.D. degree in Electrical Engineering and M.Sc. degree in Bioengineering at University of California, Los Angeles in 2015 and 2012, respectively. She received her B.Sc. degree in Optics Science and Engineering from Fudan University, China in 2010. Dr. Chen was a member of California NanoSystems Institute from 2013 to 2015 and the president of OSA/SPIE student chapter at UCLA in 2015. She has authored and co-authored 14 peer-reviewed publications and 2 patents. Her research interests include machine learning, data acquisition and analytics, image processing, and high-throughput imaging with applications in biomedical and information technologies.
Bahram Jalali is the Northrop-Grumman Endowed Chair and Professor of Electrical Engineering at UCLA with joint appointments in Biomedical Engineering, California NanoSystems Institute (CNSI) and Department of Surgery at the UCLA School of Medicine. He is the inventor of the Photonic Time Stretch, a measurement technique that has led to discoveries of new scientific phenomena and to technological inventions. He received his Ph.D. in Applied Physics from Columbia University in 1989 and was with Bell Laboratories in Murray Hill, New Jersey until 2002 before joining UCLA. He is a Fellow of IEEE, the Optical Society of America (OSA), the American Physical Society (APS) and SPIE. He is the recipient of the R.W. Wood Prize from Optical Society of America for the invention and demonstration of the first Silicon Laser, the Aron Kressel Award of the IEEE Photonics Society, the Achievement Medal from IET for his contributions to field of instrumentation for cancer detection, and the Distinguished Engineering Achievement Award from the Engineers Council. He was the founder and CEO of Cognet, a CMOS fiber optics company that was acquired by Intel in 2001. In 2005 he was elected into the Scientific American Top 50, and received the BrideGate 20 Award in 2001 for his entrepreneurial accomplishments and contributions to Southern California economy.
I Time stretch imaging1 Introduction2 Background2.1 Time Stretch Imaging2.2 Cell Classification Using Time Stretch Imaging2.3 Label-free Phenotypic Screening2.4 Warped Time Stretch for Data CompressionII Inspection and vision3 Nanometer-resolved imaging vibrometer3.1 Introduction3.2 Experimental demonstration3.3 Theoretical study of the vibrometer performance3.4 Experimental results3.5 Conclusion4 Three-dimensional ultrafast laser scanner4.1 Introduction4.2 Principle of hybrid dispersion laser scanner4.3 Applications of hybrid dispersion laser scannerIII Biomedical applications5 Label-free High-throughput Phenotypic Screening5.1 Introduction5.2 Experimental Setup5.3 Results and Discussion5.4 Conclusion6 Time Stretch Quantitative Phase Imaging6.1 Background6.2 Time Stretch Quantitative Phase Imaging6.2.1 Overview6.2.2 Imaging system6.2.3 System performance and resolvable points6.2.4 Microuidic channel design and fabrication6.2.5 Coherent Detection and Phase Extraction6.2.6 Cell Transmittance Extraction6.2.7 Image Reconstruction6.3 Image Processing Pipeline6.3.1 Feature Extraction6.3.2 Multivariate Features Enabled by Sensor Fusion6.3.3 System Calibration6.4 ConclusionIV Big data and artifitial intelligence7 Big data acquisition and processing in real-time7.1 Introduction7.2 Technical description of the acquisition system7.3 Big data acquisition results7.4 Conclusion8 Deep Learning and Classification8.1 Background8.2 Machine Learning8.3 Applications8.3.1 Blood Screening: Demonstration in Classification of OT-II and SW-480 Cells8.3.2 Biofuel: Demonstration in Algae Lipid Content Classification8.4 Further Discussions in Machine Learning8.4.1 Learning Curves8.4.2 Principal Component Analysis (PCA)8.4.3 Cross Validation8.4.4 Computation Time8.4.5 Data Cleaning8.5 ConclusionV Data compression9 Optical Data Compression in Time Stretch Imaging9.1 Background9.2 Warped Stretch Imaging9.3 Optical Image Compression9.4 Experimental Design and Results9.5 Conclusion10 Design of Warped Stretch Transform10.1 Overview10.2 Kernel Design10.2.1 Spectral Resolution10.2.2 Group Delay Profile Design10.2.3 Simulation Model10.2.4 Spectrograms10.3 Discussion10.4 Conclusion11 Concluding Remarks and Future WorkReferences
Dewey Decimal Classfication (DDC)

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

117,69 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen

117,69 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen