Composting for Sustainable Agriculture

 
 
Springer (Verlag)
  • erschienen am 21. Oktober 2014
  • |
  • X, 290 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-08004-8 (ISBN)
 
The dramatic worldwide increase in agricultural and industrial productivity has created severe environmental problems. Soil and groundwater reservoirs have been polluted with pesticides, xenobiotics and agro-chemicals. The global consensus to reduce inputs of chemical pesticides and agrochemical fertilizers, which are perceived at being hazardous by some consumers, has provided opportunities for the development of novel, benign sustainable crop management strategies.The future of agricultural depends upon our ability to enhance the productivity without damage to their long-term production potential. One of the strategies is the application of effective microbial products beneficial for both farmers and ecosystems. This kind of approach can ensure both ecological and economic sustainability. Soil microbial populations are immersed in framework of interactions, which are known to affect plant fitness and soil quality.For betterment of life of human being, improved quality and variety of products are formed due to versatile action of different group of microorganisms, Microbes are able to degrade solid waste material into compost which is a mixture of decayed organic matter, manure etc. Incomplete microbial degradation of organic waste where the microbial process varies aerobic to anaerobic form is stated as compost, if added to soil improves plant growth and development. The biological activities and microbial metabolism in the soil contribute to alter its mixture and fertility. Incorporation of organic remain in the form of compost is known to influence favourably the physio-chemical and biological properties of soil. The beneficial activities bestowed upon plants by compost utilization are multifaceted, hence most promising alternatives for achieving sustainable agricultural production.An increased awareness on compost has led to their use in agricultural concern. Contents in the present book will comprised various chapters on the role of beneficial bacteria in the composting process. The application is depicted to achieve the attainable productivity besides, in disease management and suppressiveness of organisms of phytopathogenic in nature. Significance of the compost elicits certain responses e.g. soil reclamation, soil fertility, soil health and disease management exhibit due to quality compost amendment in soil. It serves as low cost prospective option for sustainable crop production and protection.
2014
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 27
  • |
  • 16 farbige Abbildungen, 26 s/w Tabellen, 27 s/w Abbildungen
  • |
  • 27 schwarz-weiße und 16 farbige Abbildungen, 26 schwarz-weiße Tabellen, Bibliographie
  • 6,34 MB
978-3-319-08004-8 (9783319080048)
10.1007/978-3-319-08004-8
weitere Ausgaben werden ermittelt
  • Preface
  • Contents
  • Contributors
  • Chapter 1
  • Ecological Intensification through Nutrients Recycling and Composting in Organic Farming
  • 1.1 Introduction
  • 1.2 Compost and Composting in Organic Farming
  • 1.2.1 Composting: Microbial Transformation of Raw Materials
  • 1.2.2 A Plethora of Compost
  • 1.2.3 Regulatory Framework for Industrial Compost
  • 1.2.4 On-farm Composting: An Agroecological Practice
  • 1.3 Composting: Feed Microorganism to Produce Compost
  • 1.3.1 Starting Mix C/N Ratio: The Compost Secret
  • 1.3.2 Microorganisms' Environment in Composting
  • 1.3.3 Keys for Successful Composting Processes
  • 1.4 Organic Farming: Feed the Soil to Feed the Plant
  • 1.4.1 Off Farm Input Reduction by Nutrient Recycling
  • 1.4.2 Crop Residues: Incorporated or Composted?
  • 1.4.3 C/N Ratio: The Fact of the Case
  • 1.5 The Challenge of Ecological Intensification
  • 1.5.1 Feed Microorganism to Feed the Soil
  • 1.5.2 Compost in the Turn of the 3rd Millennium
  • 1.6 Conclusion
  • References
  • Chapter 2
  • Intensification of Aerobic Processing of the Organic Wastes into Compost
  • 2.1 Introduction
  • 2.2 Raw-material Base of Compost Reception
  • 2.3 Key Parameters of Aerobic Composting
  • 2.3.1 Temperature
  • 2.3.2 Aeration
  • 2.3.3 Humidity
  • 2.3.4 pH Value
  • 2.4 Types of Various Substrates for Compost and their Importance
  • 2.4.1 Composting Manure of Agricultural Animals
  • 2.4.2 Composting of Vegetative Waste
  • 2.4.3 Composting of Paper Waste
  • 2.4.4 Decomposition of Lignin Cellulose Waste
  • 2.4.5 Composting the Hydrolytic Lignine
  • 2.5 Laws of Composting
  • 2.6 Case Study of Compost with Different Substrates
  • 2.6.1 Food Processed Materials
  • 2.6.2 Sewage Waste
  • 2.7 Conclusion
  • References
  • Chapter 3
  • Lignocellulose Biodegradation in Composting
  • 3.1 Introduction
  • 3.2 Roles of Lignocellulose Biodegradation in Composting
  • 3.2.1 Conditions Affecting Composting
  • 3.2.1.1 C:N Ratio
  • 3.2.1.2 Bulking and Air Access
  • 3.2.1.3 Moisture
  • 3.2.1.4 Inoculation
  • 3.2.1.5 Enzyme Addition
  • 3.2.1.6 Compost as a Source of Enzymes
  • 3.2.2 Bacterial Communities
  • 3.2.2.1 Quantification of Biota
  • 3.2.2.2 Factors Affecting Microbial Populations
  • 3.3 Thermal Effects: Cellulose as a Fuel for Heating during Composting
  • 3.3.1 Distribution of Temperature within a Compost Pile
  • 3.3.2 Research Strategies Related to Energy Flows during Composting
  • 3.3.2.1 Experimental Systems
  • 3.3.2.2 Modeling and Simulation
  • 3.3.3 Aeration during Composting
  • 3.3.3.1 Convective Aeration
  • 3.3.3.2 Forced Aeration
  • 3.3.3.3 Anaerobic Processing
  • 3.3.4 The Energy Footprint of Composting
  • 3.4 Chemical Changes During Composting
  • 3.4.1 Biodegradation Processes
  • 3.4.2 The Recalcitrance of Lignin and Its Decomposition
  • 3.4.3 Detoxification in the Course of Composting
  • 3.4.4 Analysis of Chemical Transformations
  • 3.5 Composting of Lignocellulosic for the Stewardship of Soils
  • 3.5.1 Lignocellulosic Materials to Provide Bulk and Aeration in Soils
  • 3.5.2 Lignocellulosic Material and the Processing of Nitrogen
  • 3.5.3 Soil Fertility and Plant Growth
  • 3.5.4 Restoration of Soil under Challenging Circumstances
  • 3.5.5 Composting and Sustainability in Life Cycle Assessment
  • 3.5.6 Composting and Sustainability in Greenhouse Gas Emissions
  • 3.6 Concluding Statement
  • References
  • Chapter 4
  • Bio-composting of Aquatic Biomass Residue and its Amendments in Soil Reclamation
  • 4.1 Introduction
  • 4.2 Composting of Aquatic Biomass Residue (ABR)
  • 4.2.1 Eichhornia crassipes
  • 4.2.2 Ipomoea aquatica
  • 4.3 Bio-decomposition of Aquatic Macrophytes
  • 4.4 Efficiency of Aquatic Biomass Residue as Compost
  • 4.5 Compost amended with Nitrogen Fixing Rhizobia
  • 4.6 Significance of Compost
  • 4.7 Soil Reclamation and Enrichment
  • 4.8 Conclusion
  • References
  • Chapter 5
  • Physical, Chemical and Biological Parameters for Compost Maturity Assessment: A Review
  • 5.1 Introduction
  • 5.2 Concepts of Composting Process
  • 5.2.1 Factors Affecting the Composting Process
  • 5.2.1.1 Temperature
  • 5.2.1.2 pH
  • 5.2.1.3 Aeration
  • 5.2.1.4 Microbial Activity
  • 5.2.1.5 Moisture Content
  • 5.2.1.6 C/N Ratio
  • 5.2.2 Advantages and Disadvantages of Composting
  • 5.2.3 Benefits of Composting
  • 5.3 Maturity and Stability Assessment for Quality Compost
  • 5.3.1 Physical Parameters
  • 5.3.1.1 Colour and Odour
  • 5.3.1.2 Temperature
  • 5.3.1.3 Weight Loss/Organic Matter Loss
  • 5.3.2 Chemical Parameters
  • 5.3.2.1 pH
  • 5.3.2.2 EC
  • 5.3.2.3 C:N Ratio (Solid Phase)
  • 5.3.2.4 C:N Ratio (Water Extract)
  • 5.3.2.5 Water Soluble Carbon (WSC)
  • 5.3.2.6 NH4+ and NO3-N Concentration
  • 5.3.2.7 CEC (Ash Free Material Basis)
  • 5.3.2.8 Humification Parameters
  • 5.3.3 Biological Parameters
  • 5.3.3.1 Germination Test
  • 5.3.3.2 Oxygen and CO2 Respirometry
  • 5.3.3.3 Microbial Population/Count
  • 5.3.3.4 Enzyme Activities
  • 5.4 Compost Quality Standards
  • 5.5 Conclusion
  • References
  • Chapter 6
  • Thermophilic Bacilli and their Enzymes in Composting
  • 6.1 Introduction
  • 6.2 Thermophiles
  • 6.2.1 A Brief Classification of Thermophilic Bacilli
  • 6.3 Methods for Analysing Microbial Diversity and Community Structure during Composting
  • 6.3.1 Enrichment Methods
  • 6.3.2 Biochemical Methods
  • 6.3.3 Phospholipid Fatty Acid (PLFA) Analysis
  • 6.3.4 Molecular Methods
  • 6.3.4.1 Mole Percentage Guanine + Cytosine (mol% G + C)
  • 6.3.4.2 Nucleic Acid Hybridization
  • 6.3.4.3 DNA Re-association
  • 6.3.4.4 Restriction Fragment Length Polymorphism (RFLP)
  • 6.3.4.5 Terminal Restriction Fragment Length Polymorphism (T-RFLP)
  • 6.3.4.6 Denaturant Gradient Gel Electrophoresis (DGGE)/Temperature Gradient Gel Electrophoresis (TGGE)
  • 6.3.4.7 Single Strand Conformation Polymorphism (SSCP)
  • 6.3.4.8 Pyrosequencing
  • 6.3.4.9 Illumina-based High Throughput Microbial Community Analysis
  • 6.4 Role of Thermophilic Bacilli in Composting
  • 6.5 The Spectrum of Thermophilic Bacilli
  • 6.6 Enzymes and Enzymatic Processes Associated with Composting
  • 6.6.1 Proteases
  • 6.6.2 Cellulases and Hemicellulases
  • 6.6.3 Other Enzymes Involved During Composting
  • 6.7 Cellulolytic Thermophilic Bacilli and Cellulases from Compost
  • 6.8 Future Prospects and Recommendations: The Ecological and Economic Impact of Composting with Special Reference to Agricultural Residues
  • References
  • Chapter 7
  • Agronomic, Soil Quality and Environmental Consequences of Using Compost in Vegetable Production
  • 7.1 Introduction
  • 7.2 CROA Compost Field Experiment Design
  • 7.3 Impacts of Compost on Intensive Vegetable Production Systems
  • 7.3.1 Agronomic and Economic Impacts
  • 7.3.2 Impact of Composts on Soil Quality
  • 7.3.2.1 Physical Soil Quality
  • 7.3.2.2 Soil Chemistry
  • 7.3.2.3 Nutrient Cycling and the Environment
  • 7.3.2.4 Soil Microbiology
  • 7.3.3 Contaminants Issue
  • 7.4 Conclusions
  • References
  • Chapter 8
  • Principles of Compost-based Plant Diseases Control and Innovative New Developments
  • 8.1 Introduction
  • 8.1.1 Plant Pathogens and Diseases
  • 8.1.2 The Old Compost as Innovative Tool for Diseases Control
  • 8.2 The Concept of Compost Suppressivity
  • 8.2.1 Biotic and Abiotic Suppressivity
  • 8.2.2 General and Specific Suppressivity
  • 8.2.3 Direct and Indirect Suppressivity
  • 8.2.4 From Potential to Multiple Suppressivity
  • 8.3 The Mechanisms Governing Compost Suppressivity
  • 8.3.1 Antagonistic Models
  • 8.3.1.1 Microbiostasis
  • 8.3.1.2 Antibiosis
  • 8.3.1.3 Hyperparasitism
  • 8.3.1.4 Activation of Plant Disease-Resistance
  • 8.3.2 Role of Chemicals in the Compost Suppressivity
  • 8.3.3 Physical Aspects of Composts Suppressivity
  • 8.4 Ecological Aspects Related to Compost Suppressivity
  • 8.5 Compost Suppressivity in Integrated Pest Management
  • 8.6 Compost as Source of Plant Protectants
  • 8.6.1 Microbial Antagonists
  • 8.6.2 Compost-derived Natural Substances
  • 8.7 Compost Extracts, Leachate and Teas
  • 8.8 Conclusion
  • References
  • Chapter 9
  • Integrating Compost Teas in the Management of Fruit and Foliar Diseases for Sustainable Crop Yield and Quality
  • 9.1 Introduction
  • 9.2 Aerated and Non-Aerated Compost Tea
  • 9.3 Compost Teas as a Form of Biological Control
  • 9.4 Production Variables
  • 9.4.1 Compost Raw Materials
  • 9.4.2 Compost Maturity and Microbial Community
  • 9.4.3 Extraction Time and Compost to Water Ratio
  • 9.4.4 Amendments and Adjuvants
  • 9.4.5 Storage
  • 9.4.6 Dilution Prior to Application
  • 9.5 Mechanisms of Action
  • 9.6 Food Safety Issues
  • 9.7 Methods for Evaluating Disease Suppression
  • 9.7.1 Controlled-Environment Experiments
  • 9.7.2 Field Trials
  • 9.8 Integrating Compost Teas in Disease Management
  • 9.8.1 Seasonal Variation and Disease Thresholds
  • 9.8.2 Strategies for Implementation
  • 9.8.2.1 Integration with Synthetic Chemicals
  • 9.8.3 Sustainable Practices and Produce Quality
  • 9.9 Future Research
  • 9.10 Conclusion
  • References
  • Chapter 10
  • Microbial Biomass Improvement Following Municipal Solid Waste Compost Application in Agricultural Soil
  • 10.1 Introduction
  • 10.2 Soil Microbial Biomass Role and Assessment
  • 10.3 Municipal Solid Waste Composting Process
  • 10.3.1 Composting Process
  • 10.3.2 MSW Compost Application Improves Agricultural Soil Properties
  • 10.3.2.1 MSW Compost Application Improves Soil Physico-Chemical Properties
  • 10.3.2.2 MSW Compost Application Improves Soil Microbial Biomass and Activity
  • 10.3.2.3 Effect of MSWC Heavy Metals on Agricultural Soil
  • 10.4 Conclusion
  • References
  • Chapter 11
  • Bio-composting Oil Palm Waste for Improvement of Soil Fertility
  • 11.1 Introduction
  • 11.2 Sources of Bio-compost
  • 11.2.1 Agro-Industrial Wastes
  • 11.2.1.1 Waste from Palm Oil Mill
  • 11.2.1.2 Biomass Wastes from Palm Oil Mills
  • 11.2.1.3 Palm Kernel Shells
  • 11.2.1.4 Oil Palm Empty Fruit Bunches
  • 11.2.1.5 Palm Oil Mill Effluent
  • 11.2.1.6 Palm Oil Mill Effluent Conversion to Value Added Products
  • 11.2.1.7 Oil Palm Empty Fruit Bunch
  • 11.2.1.8 Oil Palm Trunk and Frond
  • 11.3 Procedure for Making Compost from Oil Palm EFB and Frond
  • 11.3.1 Composting Process
  • 11.3.1.1 Compost from Oil Palm EFB and Frond
  • 11.3.2 Aerated Static Pile
  • 11.3.2.1 Aeration
  • 11.3.2.2 Aeration System for a Closed Chamber Composting Facility
  • 11.3.2.3 Windrow Composting
  • 11.3.2.4 Compost Windrow Turners
  • 11.3.2.5 In-vessel Composting
  • 11.3.3 Co-composting of Oil Palm Waste
  • 11.3.3.1 Vermicomposting
  • 11.4 Role of Micro-organism in Bio-compost
  • 11.4.1 Microbial Sources
  • 11.4.1.1 Bacteria
  • 11.4.1.2 Actinobacteria
  • 11.4.1.3 Fungi
  • 11.5 Usage of Bio-compost
  • 11.5.1 Main Uses of Bio-compost
  • 11.5.1.1 Microorganisms
  • 11.5.1.2 Nutrient Conversion
  • 11.5.1.3 Pollutant Degradation
  • 11.5.1.4 Compost as a Source of Organic Matter
  • 11.5.1.5 Compost as Microbial Food
  • 11.5.1.6 Nutrients and Water Retention
  • 11.5.1.7 Improvement in the Physical Properties of Soils
  • 11.5.2 Benefits of Bio-compost
  • 11.6 Compost Application
  • 11.6.1 Combined Application of Bio-compost with Inorganic Fertilizers
  • 11.6.2 Bio-compost Handling and Storage
  • 11.7 Conclusion
  • References
  • Chapter 12
  • Decomposition of Organic Materials into High Value Compost for Sustainable Crop Productivity
  • 12.1 Introduction
  • 12.2 Recycling of Organic Materials for the Maintenance of Soil Fertility
  • 12.2.1 Mulching
  • 12.2.2 Composting
  • 12.3 Ecology of Composting
  • 12.4 Principles of Composting
  • 12.5 Enrichment Process
  • 12.6 Factors Affecting Decomposition of Waste and Compost Process
  • 12.6.1 pH
  • 12.6.2 Temperature
  • 12.6.3 Carbon Nitrogen Ratio
  • 12.7 Role of Composting in Agricultural Production
  • 12.8 Conclusion
  • References
  • Chapter 13
  • Compost: A Tool to Sustainable Urban and Peri-Urban Agriculture in Sub-Saharan Africa?
  • 13.1 Introduction
  • 13.2 Urbanization and Urban and Peri-Urban Agriculture
  • 13.2.1 Benefits of Urban and Peri-Urban Agriculture
  • 13.2.2 Problems of Urban and Peri-Urban Agriculture
  • 13.3 Soil Constraints in Sub-Saharan Africa
  • 13.4 Urban Wastes Management Policy in Sub-Saharan Africa
  • 13.5 Composting
  • 13.5.1 Microbial Process of MSW Composting
  • 13.5.2 Advantages of Composting and Compost Application
  • 13.5.3 Factors Constraining Composting in Developing Countries
  • 13.6 Conclusion
  • References
  • Index

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

117,69 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen