An Introduction to X-Ray Physics, Optics, and Applications

 
 
University Press of Mississippi
  • 1. Auflage
  • |
  • erschienen am 13. Juni 2017
  • |
  • 368 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-4008-8773-6 (ISBN)
 

In this book, Carolyn A. MacDonald provides a comprehensive introduction to the physics of a wide range of x-ray applications, optics, and analysis tools. Theory is applied to practical considerations of optics and applications ranging from astronomy to medical imaging and materials analysis.

Emphasizing common physical concepts that underpin diverse phenomena and applications of x-ray physics, the book opens with a look at nuclear medicine, motivating further investigations into scattering, detection, and noise statistics. The second section explores topics in x-ray generation, including characteristic emission, x-ray fluorescence analysis, bremsstrahlung emission, and synchrotron and laser sources. The third section details the main forms of interaction, including the physics of photoelectric absorption, coherent and Compton scattering, diffraction, and refractive, reflective, and diffractive optics. Applications in this section include x-ray spectroscopy, crystallography, and dose and contrast in radiography. A bibliography is included at the end of every chapter, and solutions to chapter problems are provided in the appendix.

Based on a course for advanced undergraduates and graduate students in physics and related sciences and also intended for researchers, An Introduction to X-Ray Physics, Optics, and Applications offers a thorough survey of the physics of x-ray generation and of interaction with materials.

  • Common aspects of diverse phenomena emphasized
  • Theoretical development tied to practical applications
  • Suitable for advanced undergraduate and graduate students in physics or related sciences, as well as researchers
  • Examples and problems include applications drawn from medicine, astronomy, and materials analysis
  • Detailed solutions are provided for all examples and problems
  • Englisch
  • Princeton
  • |
  • USA
  • Für Beruf und Forschung
  • Digitale Ausgabe
  • Fixed format
  • 36 color illus. 215 line illus. 5 tables.
  • |
  • 36 color illus. 215 line illus. 5 tables.
  • 83,95 MB
978-1-4008-8773-6 (9781400887736)
weitere Ausgaben werden ermittelt
Carolyn A. MacDonald
Preface xiii
Acknowledgments xv
List of Constants and Variables xvii
PART I. FOUNDATIONS
1. INTRODUCTION 3
1.1 The discovery 3
1.2 What is an x ray? 4
1.3 What makes x rays useful? 6
1.4 The layout of the text 8
1.5 The elusive hyphen 8
Problems 8
Further reading 9
2. A CASE STUDY: NUCLEAR MEDICINE 10
2.1 Metastable emitters and half-life 10
2.2 A brief introduction to nuclear decay 13
2.3 Nuclear medicine 14
2.4 Photon detection and scatter rejection 20
2.5 Photon statistics 22
2.6 SPECT 24
Problems 27
Further reading 29
PART II. X-RAY GENERATION
3. THERMAL SOURCES AND PLASMAS 33
3.1 Blackbody radiation 33
3.2 Generation of very hot plasmas 35
3.3 Plasma frequency 37
3.4 Debye length 40
3.5 Screening and the Debye length 41
3.6 Fluctuations and the Debye length 42
Problems 42
Further reading 43
4. CHARACTERISTIC RADIATION, X-RAY TUBES, AND X-RAY FLUORESCENCE SPECTROSCOPY 44
4.1 Introduction 44
4.2 Core atomic levels 45
4.3 Characteristic spectra 48
4.4 Emission rates and intensity 50
4.5 Auger emission 52
4.6 Line widths 53
4.7 X-ray fluorescence 55
Problems 65
Further reading 67
5. SOURCE INTENSITY, DIVERGENCE, AND COHERENCE 68
5.1 Intensity and angular intensity 68
5.2 Photon intensity and photon angular intensity 73
5.3 Brightness and brilliance 75
5.4 Global divergence 79
5.5 Local divergence 80
5.6 X-ray tube design 82
5.7 Coherence 84
5.8 Spatial coherence 86
5.9 Temporal coherence 90
5.10 In-line phase imaging 92
Problems 93
Further reading 94
6. BREMSSTRAHLUNG RADIATION AND X-RAY TUBES 95
6.1 Field from a moving charge 95
6.2 Radiation from an accelerating (or decelerating) charge 95
6.3 Emission from a very thin anode 98
6.4 Emission from a thick anode 101
6.5 Efficiency 101
6.6 Thick-target photon emission rate modeling 102
6.7 Spectral shaping 105
Problems 106
Further reading 107
7. SYNCHROTRON RADIATION 108
7.1 Classical (nonrelativistic) orbits 108
7.2 Semiclassical analysis 112
7.3 Relativistic bremsstrahlung 114
7.4 Synchrotrons 117
7.5 Pulse time and spectrum 117
7.6 Insertion devices 121
7.7 Collimation and coherence 125
Problems 126
Further reading 126
8. X-RAY LASERS 127
8.1 Stimulated and spontaneous emission 127
8.2 Laser cavities 130
8.3 Highly ionized plasmas 131
8.4 High-harmonic generation 131
8.5 Free-electron lasers 133
8.6 Novel sources 135
Problems 135
Further reading 136
PART III. X-RAY INTERACTIONS WITH MATTER
9. PHOTOELECTRIC ABSORPTION, ABSORPTION SPECTROSCOPY, IMAGING, AND DETECTION 139
9.1 Absorption coefficients 139
9.2 Attenuation versus absorption 144
9.3 Index of refraction 145
9.4 Absorption coefficient of compounds and broadband radiation 147
9.5 Absorption edges 148
9.6 Absorption spectroscopy 149
9.7 Filtering 151
9.8 Imaging 152
9.8.1 Contrast 152
9.8.2 Dose 154
9.8.3 Noise 154
9.9 Detectors 156
9.10 Tomosynthesis and tomography 160
Problems 161
Further reading 162
10. COMPTON SCATTERING 163
10.1 Conservation laws 164
10.2 Compton cross section 165
10.3 Inverse Compton sources 166
10.4 Scatter in radiography 168
10.5 Contrast with scatter 169
10.6 Scatter reduction 170
Problems 172
Further reading 173
11. COHERENT SCATTER I: REFRACTION AND REFLECTION 174
11.1 Free-electron theory and the real part of the index of refraction 175
11.2 Atomic scattering factor 178
11.3 Phase velocity 179
11.4 Slightly bound electrons and the phase response 180
11.5 Kramers-Kronig relations 182
11.6 Coherent scatter cross section 183
11.7 Relativistic cross section 187
11.8 Snell's law 187
11.9 Reflectivity 190
11.10 Reflection coefficients at grazing incidence 193
11.11 Surface roughness 195
Problems 199
Further reading 200
12. REFRACTIVE AND REFLECTIVE OPTICS 201
12.1 Refractive optics 201
12.2 Reflective optics 206
12.2.1 Elliptical mirrors 206
12.2.2 Wolter optics 209
12.2.3 Capillary optics 211
12.2.4 Polycapillary optics 213
12.2.5 Array optics 219
12.2.6 Energy filtering 223
12.2.7 Optics metrology 223
12.3 Optics simulations 224
Problems 225
Further reading 226
13. COHERENT SCATTER II: DIFFRACTION 227
13.1 Scattering from a single electron 227
13.2 Two electrons 229
13.3 Scattering from an atom: Fourier transform relationships 230
13.4 A chain of atoms 231
13.5 Lattices and reciprocal lattices 233
13.6 Planes 235
13.7 Bragg's law 237
13.8 ¿-2¿ diffractometer 238
13.9 Powder diffraction 238
13.10 Structure factor 242
13.11 Intensity 244
13.12 Defects 246
13.12.1 Mosaicity 246
13.12.2 Thermal vibrations 247
13.12.3 Crystal size 249
13.12.4 Amorphous materials 250
13.13 Resolution 251
13.13.1 The effect of angular broadening 251
13.13.2 Energy spread 252
13.13.3 Global divergence and aperture size 253
13.13.4 Local divergence 253
Problems 254
Further reading 255
14. SINGLE-CRYSTAL AND THREE-DIMENSIONAL DIFFRACTION 256
14.1 The Ewald sphere 256
14.2 The ¿-2¿ diffractometer and the Rowland circle 257
14.3 Aside: Proof that the angle of incidence is always ¿B on the Rowland circle 260
14.4 Beam divergence 261
14.5 Texture and strain measurements 262
14.6 Single-crystal diffraction 264
14.7 Laue geometry 268
14.8 Protein crystallography 269
14.9 The phase problem 270
14.10 Coherent diffraction imaging 271
14.11 Dynamical diffraction 271
Problems 273
Further reading 273
15. DIFFRACTION OPTICS 274
15.1 Gratings 274
15.2 Zone plates 279
15.3 Crystal optics and multilayers 288
15.3.1 Monochromators 288
15.3.2 Multilayer optics 289
15.3.3 Curved crystals 294
Problems 298
Further reading 298
Appendix: Solutions to End-of-Chapter Problems 299
Chapter 1 299
Chapter 2 299
Chapter 3 303
Chapter 4 306
Chapter 5 311
Chapter 6 314
Chapter 7 320
Chapter 8 323
Chapter 9 323
Chapter 10 326
Chapter 11 328
Chapter 12 330
Chapter 13 331
Chapter 14 334
Chapter 15 336
Index 339

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

77,49 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen