Organic Rankine Cycle (ORC) Power Systems

Technologies and Applications
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 24. August 2016
  • |
  • 698 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100511-8 (ISBN)
 

Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications provides a systematic and detailed description of organic Rankine cycle technologies and the way they are increasingly of interest for cost-effective sustainable energy generation. Popular applications include cogeneration from biomass and electricity generation from geothermal reservoirs and concentrating solar power installations, as well as waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes. With hundreds of ORC power systems already in operation and the market growing at a fast pace, this is an active and engaging area of scientific research and technical development.

The book is structured in three main parts: (i) Introduction to ORC Power Systems, Design and Optimization, (ii) ORC Plant Components, and (iii) Fields of Application.


  • Provides a thorough introduction to ORC power systems
  • Contains detailed chapters on ORC plant components
  • Includes a section focusing on ORC design and optimization
  • Reviews key applications of ORC technologies, including cogeneration from biomass, electricity generation from geothermal reservoirs and concentrating solar power installations, waste heat recovery from gas turbines, internal combustion engines and medium- and low-temperature industrial processes
  • Various chapters are authored by well-known specialists from Academia and ORC manufacturers
  • Englisch
  • Cambridge
Elsevier Science
  • 222,14 MB
978-0-08-100511-8 (9780081005118)
0081005113 (0081005113)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Organic Rankine Cycle (ORC) Power Systems
  • Related titles
  • Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Introduction to Organic Rankine Cycle power systems
  • 1 - Theoretical basis of the Organic Rankine Cycle
  • 1.1 Introduction
  • 1.2 The unique features of Organic Rankine Cycles
  • 1.3 Why air (or any other gas) is not an appropriate working fluid for a power cycle operating with low-medium temperature heat ...
  • 1.3.1 The only thermodynamic processes which are technologically feasible in a power cycle
  • 1.3.2 The poor air (or any other gas) power cycle performance at low Tmax temperature
  • 1.3.3 The second-law analysis of air power cycles (with reference to a constant temperature heat source)
  • 1.3.4 The advantages of substituting a gas cycle with a Rankine cycle
  • 1.4 Why water is not the right working fluid for power cycles fed by energy sources of limited capacity
  • 1.4.1 The steam turbine issue for steam cycles
  • 1.5 Thermodynamic issues related to the choice of working fluid
  • 1.5.1 Heat sources
  • 1.5.1.1 Constant temperature heat sources
  • 1.5.1.2 Variable temperature heat sources
  • 1.6 Criteria for the selection of the working fluid
  • 1.6.1 General requirements shared with the refrigerating and air-conditioning industry
  • 1.6.2 A specific requirement for Organic Rankine Cycles: thermal stability
  • 1.6.3 Requirements on thermodynamic properties to be optimized
  • 2 - History of Organic Rankine Cycle systems
  • 2.1 Introduction
  • 2.2 Learning by doing: from steam engine to thermodynamics
  • 2.3 From steam engine to ORC, progress based on practical engineering and not on theory
  • 2.4 Rebirth of the ORC: integrating thermodynamics and system design
  • 2.4.1 University of Naples
  • 2.4.2 National Physical Laboratory of Israel
  • 2.4.3 Politecnico di Milano
  • 2.4.4 Lappeenranta University of Technology
  • 2.4.5 Various demonstration units
  • 2.4.6 New cycles proposed
  • 2.5 Early commercial plants
  • 2.6 Commercialization of ORC systems, present status
  • 2.6.1 Established dedicated ORC manufacturers
  • 2.6.1.1 Ormat
  • 2.6.1.2 Turboden
  • 2.6.2 New entrants (in alphabetical order)
  • 2.6.2.1 Adoratec
  • 2.6.2.2 Atlas Copco
  • 2.6.2.3 ElectraTherm
  • 2.6.2.4 Exergy
  • 2.6.2.5 General Electric (GE)
  • 2.6.2.6 GMK
  • 2.6.2.7 Triogen Company (Triogen)
  • 2.6.2.8 Turbine air systems (TAS)
  • 2.6.2.9 United Technologies/Pratt and Whitney
  • 2.6.2.10 Various new entrants
  • 2.7 Software development
  • 2.8 Summary
  • References
  • 3 - Technical options for Organic Rankine Cycle systems
  • 3.1 Equipment list
  • 3.1.1 Heat exchangers
  • 3.1.1.1 Shell and Tubes
  • 3.1.1.2 Evaporators and water cooled condensers
  • 3.1.1.3 Air cooled condensers
  • 3.1.1.4 Recuperator
  • 3.1.1.5 Brazed plate and plate fin
  • 3.1.2 Expander
  • 3.1.2.1 Turbomachines
  • 3.1.2.2 Volumetric expanders
  • 3.1.3 Pumps
  • 3.1.4 Generators, gear boxes, and power electronic systems
  • 3.1.5 Noncondensable gas removal
  • 3.1.6 Balance of plant and instrumentation
  • 3.2 Plant layouts
  • 3.2.1 Single pressure level cycles
  • 3.2.1.1 Subcritical cycles
  • 3.2.1.2 Supercritical cycles
  • 3.2.2 Multi pressure levels cycles
  • 3.2.3 Trilateral cycles
  • 3.3 Use of mixtures versus pure fluids
  • References
  • 4 - Organic fluids for Organic Rankine Cycle systems: classification and calculation of thermodynamic and transport properties*
  • 4.1 Overview of thermophysical properties of fluids and their application to Organic Rankine Cycle systems
  • 4.2 Classification of fluids
  • 4.3 Thermodynamic properties of pure fluids
  • 4.3.1 Equations of state
  • 4.3.2 Ideal-gas equation of state
  • 4.3.3 Cubic equation of state
  • 4.3.4 Multiparameter fundamental equation of state
  • 4.3.5 Vapor-liquid equilibrium
  • 4.3.6 Flash routines
  • 4.3.7 Temperature-density inputs
  • 4.3.8 Pressure-enthalpy inputs
  • 4.3.9 Using initial estimate values
  • 4.3.10 IAPWS-IF97 as an alternative solution for water
  • 4.4 Thermodynamic properties of mixtures
  • 4.4.1 Cubic equations of state
  • 4.4.2 Multiparameter mixture models
  • 4.4.3 Reducing functions
  • 4.4.4 Mixture thermodynamics
  • 4.4.4.1 Phase equilibria
  • 4.4.4.2 Flash routines
  • 4.5 Transport properties of pure fluids
  • 4.5.1 Viscosity
  • 4.5.2 Thermal conductivity
  • 4.5.3 Extended corresponding states
  • 4.6 Transport properties of mixtures
  • 4.6.1 Viscosity and thermal conductivity
  • 4.7 Surface tension
  • 4.7.1 Pure fluids
  • 4.7.2 Mixtures
  • 4.8 Interpolation methods
  • 4.8.1 Tabular interpolation
  • 4.8.2 Tabular Taylor-series extrapolation
  • 4.8.2.1 Bicubic interpolation
  • 4.8.2.2 Spline-based tabular look-up interpolation
  • 4.9 Libraries available
  • 4.9.1 REFPROP
  • 4.9.2 CoolProp
  • 4.9.3 TREND
  • 4.9.4 FluidProp
  • 4.9.5 Zittau/Goerlitz libraries
  • Acknowledgments
  • References
  • 5 - Thermal stability of organic fluids for Organic Rankine Cycle systems
  • 5.1 Introduction
  • 5.2 The thermal and the thermochemical stability of working fluids
  • 5.2.1 The thermal stability
  • 5.2.2 The thermochemical stability
  • 5.3 The evaluation of thermal stability
  • 5.4 A system for the measurement of thermal stability
  • 5.4.1 Some examples of vapor pressure measurements
  • 5.4.2 The quantification of the decomposition
  • 5.5 Conclusions
  • Nomenclature
  • References
  • 6 - Dynamic modeling and control of Organic Rankine Cycle plants
  • 6.1 Introduction
  • 6.2 Dynamic modeling and simulation for control design
  • 6.2.1 Role of dynamic modeling in the design process
  • 6.2.2 Introduction to object-oriented modeling
  • 6.2.3 Modelica models of Organic Rankine Cycle systems
  • 6.2.4 Modeling assumptions for dynamic models or Organic Rankine Cycle systems
  • 6.2.4.1 Vapor generator
  • 6.2.4.2 Recuperator
  • 6.2.4.3 Condenser
  • 6.2.4.4 Expanders
  • 6.2.4.5 Pumps
  • 6.2.4.6 Control valves
  • 6.2.4.7 Sensors
  • 6.2.4.8 Electrical/mechanical generation
  • 6.3 Control design work-flow
  • 6.3.1 Conventional work-flow
  • 6.3.2 Advanced and integrated work-flows
  • 6.4 Conclusions
  • References
  • 7 - Thermodynamic and technoeconomic optimization of Organic Rankine Cycle systems
  • 7.1 Design of Organic Rankine Cycles and their optimization
  • 7.1.1 Organic Rankine Cycle design steps
  • 7.1.2 Problem analysis
  • 7.1.3 Choice of working fluid and cycle configuration
  • 7.1.3.1 Working fluid choice
  • Thermal stability and material compatibility
  • Cost, environmental impact, and safety concerns
  • Effects on component sizing and cycle design
  • 7.1.3.2 Plant layout choice
  • 7.2 System optimization
  • 7.2.1 Objective function
  • 7.2.1.1 Technothermodynamic optimization
  • 7.2.1.2 Need for component efficiency correlations
  • 7.2.1.3 Technoeconomic optimization
  • 7.2.1.4 Need for reliable cost correlations
  • Equipment cost
  • Other capital costs
  • 7.2.1.5 Other objective functions
  • Off-design and dynamic behavior
  • Other parameters of interest: weight, volume, and environmental impact
  • 7.2.2 Optimizing variable definitions and cycle design model
  • 7.2.3 Numerical approaches for the plant simulation
  • 7.2.4 Optimization approaches
  • 7.2.4.1 Single-objective optimization algorithms
  • 7.2.4.2 Classification of problem constraints
  • 7.2.4.3 Multiobjective optimization algorithms
  • 7.2.4.4 Example of algorithm selection
  • 7.3 Numerical examples
  • 7.3.1 Technoeconomic analysis of organic Rankine cycle plants in the geothermal field
  • 7.3.1.1 Technothermodynamic optimization
  • 7.3.1.2 Technoeconomic optimization
  • 7.3.2 Optimization of biomass-fired combined heat and power Organic Rankine Cycles
  • 7.3.3 Multiobjective optimization of Organic Rankine Cycles in offshore waste heat recovery applications
  • Acronyms
  • Nomenclature
  • Subscripts
  • References
  • Two - Organic Rankine Cycle plant components and system optimization
  • 8 - Fluid dynamic design of Organic Rankine Cycle turbines
  • 8.1 Introduction
  • 8.2 Review of Organic Rankine Cycle turbine architectures
  • 8.2.1 Radial-inward or centripetal turbines
  • 8.2.2 Axial turbines
  • 8.2.3 Radial-outward or centrifugal turbines
  • 8.2.4 Hybrid architectures
  • 8.3 Mean-line preliminary design
  • 8.3.1 Mean-line concept
  • 8.3.2 Mean-line formulation
  • 8.3.3 Guidelines for a preliminary design of multistage Organic Rankine Cylce turbines
  • 8.3.4 Optimal preliminary design of Organic Rankine Cycle turbines
  • 8.4 Bridge between preliminary and aerodynamic design: throughflow model
  • 8.4.1 Throughflow concept
  • 8.4.2 Throughflow formulation
  • 8.4.3 Throughflow or spanwise design guidelines
  • 8.4.4 Optimal spanwise design
  • 8.5 Aerodynamic design
  • 8.5.1 Geometrical representation of Organic Rankine Cycle turbine blades
  • 8.5.1.1 Blade geometry parametrization
  • 8.5.1.2 Design remarks for Organic Rankine Cycle turbine blades
  • 8.5.2 Automatic design of Organic Rankine Cycle turbine blades by shape-optimization techniques
  • 8.5.2.1 Computational Fluid-Dynamics modeling for Organic Rankine Cycle turbine flow simulation
  • 8.5.2.2 Computational Fluid-Dynamics-based turbomachinery design
  • 8.5.2.3 Adjoint-based gradient optimization of a supersonic Organic Rankine Cycle turbine cascade
  • 8.5.2.4 Evolutionary stochastic optimization of a supersonic Organic Rankine Cycle turbine cascade
  • 8.5.2.5 Robust multipoint optimization of a supersonic Organic Rankine Cycle turbine cascade
  • 8.6 Conclusions
  • References
  • 9 - Axial flow turbines for Organic Rankine Cycle applications
  • 9.1 The role of axial-flow turbines in the power generation sector
  • 9.2 The peculiarities of the design procedures of Organic Rankine Cycle turbines
  • 9.2.1 The selection of input parameters is part of the turbine design procedure
  • 9.2.2 Why simple correlations of efficiency prediction proposed for gas and steam turbines do not apply to Organic Rankine Cycle ...
  • 9.3 Methodology
  • 9.3.1 Similarity rules and selection of independent variables
  • 9.3.2 Simplifying assumptions of fluid behavior
  • 9.3.3 The Axtur code
  • 9.4 The proposed efficiency correlation
  • 9.4.1 Single stage turbines
  • 9.4.1.1 Effect of Ns
  • 9.4.1.2 Effect of Vr at optimized Ns
  • 9.4.1.3 Effect of SP at optimized Ns
  • 9.4.2 Multistage turbine
  • 9.4.3 Numerical correlations of efficiency
  • 9.5 Model validation
  • 9.6 Conclusions
  • Nomenclature
  • References
  • 10 - Radial inflow turbines for Organic Rankine Cycle systems
  • 10.1 Radial inflow turbines: what are they?
  • 10.2 Radial inflow turbines: who makes them?
  • 10.3 Thermodynamic fundamentals
  • 10.4 Variable geometry nozzle guide vanes in the radial inflow turbine
  • 10.5 Gearbox and integral gear technology
  • 10.6 Advantages of radial turbines compared to axial or impulse turbines in Organic Rankine Cycle-based waste heat recovery proc ...
  • 10.7 Radial turbines support higher pressure ratios and broader areas of application
  • 10.8 Large turbines
  • 10.9 Sturdiness and reliability
  • 10.10 Advantages of gas-lubricated mechanical face seals: optimal turbine efficiency
  • 10.11 Advantages of oil-lubricated mechanical face seals: maximum leakproofness
  • 10.12 The track records
  • References
  • 11 - Radial outflow turbines for Organic Rankine Cycle expanders
  • 11.1 Introduction
  • 11.2 The history of the radial outflow configuration
  • 11.2.1 Parsons turbine
  • 11.2.2 Ljungström turbine
  • 11.3 Radial outflow configuration: considerations about particular features and comparison with the most traditional alternative
  • 11.4 Other configurations of the radial outflow turbine in Organic Rankine Cycles
  • 11.4.1 The radial-axial configuration
  • 11.4.2 The multipressure radial outflow turbine
  • 11.5 Conclusion
  • References
  • 12 - Positive displacement expanders for Organic Rankine Cycle systems
  • 12.1 General introduction
  • 12.1.1 Definition
  • 12.1.2 Major differences among positive displacement expanders
  • 12.1.2.1 Type of motion of moving elements
  • 12.1.2.2 Internal expansion
  • 12.1.2.3 Presence of valves
  • 12.1.2.4 Open-drive versus semi-hermetic and hermetic machines
  • 12.1.2.5 Oil-lubricated versus oil-free
  • 12.2 Description of major types of displacement expanders
  • 12.2.1 Piston expanders
  • 12.2.1.1 Principle of operation
  • 12.2.1.2 Mechanical aspects
  • 12.2.1.3 Technical limitations
  • 12.2.2 Scroll expanders
  • 12.2.2.1 Principle of operation
  • 12.2.2.2 Mechanical aspects
  • 12.2.2.3 Technical limitations
  • 12.2.3 Twin-screw expanders
  • 12.2.3.1 Principle of operation
  • 12.2.3.2 Mechanical aspects
  • 12.2.3.3 Technical limitations
  • 12.2.4 Vane expanders
  • 12.2.4.1 Mechanical aspects
  • 12.2.4.2 Technical limitation
  • 12.2.5 Other machines
  • 12.2.5.1 Roots expanders
  • 12.2.5.2 Trochoidal expanders
  • 12.2.5.3 Single-screw expanders
  • 12.3 Thermodynamics of displacement expanders
  • 12.3.1 Major losses in displacement expanders
  • 12.3.1.1 Internal leakages
  • 12.3.1.2 Heat transfer
  • 12.3.1.3 Friction losses
  • 12.3.1.4 Losses associated with the presence of a clearance volume
  • 12.3.1.5 Pressure drops
  • 12.3.2 Displaced mass flow rate
  • 12.3.2.1 Expander displacement
  • 12.3.2.2 Working cycle frequency
  • 12.3.2.3 Mass flow rate
  • 12.3.3 Produced mechanical or electrical power
  • 12.3.3.1 Theoretical internal power
  • 12.3.3.2 Actual internal power
  • 12.3.3.3 Shaft power
  • 12.3.3.4 Electrical power
  • 12.3.3.5 Overall expander energy balance
  • 12.4 Performance of displacement expanders
  • 12.4.1 Performance indicators
  • 12.4.1.1 Volumetric performance
  • 12.4.1.2 Power performance
  • 12.4.2 Typical achieved performance
  • 12.5 Integration of displacement expanders into Organic Rankine Cycle systems
  • 12.5.1 Selection of the expander technology
  • 12.5.1.1 Capacity
  • 12.5.1.2 Technical limitations
  • 12.5.2 Expander preliminary design
  • 12.5.3 Control
  • 12.6 Conclusions
  • Acknowledgments
  • References
  • 13 - Heat transfer and heat exchangers
  • 13.1 Heat transfer in exchangers
  • 13.2 Heat exchanger basics
  • 13.3 Heat transfer and pressure drop in pipe flow
  • 13.4 Heat transfer and pressure drop in external flow through banks of plain and finned tubes
  • 13.5 Evaporation and boiling heat transfer
  • 13.5.1 Pool boiling on the outside of tubes and tube bundles
  • 13.5.2 Flow boiling inside tubes
  • 13.6 Condensation heat transfer
  • 13.6.1 External film condensation heat transfer
  • 13.6.2 In-tube flow condensation heat transfer
  • 13.7 Pressure drop in two-phase flow
  • 13.8 Shell-and-tube heat exchangers
  • 13.9 Air-cooled heat exchangers
  • 13.10 Gasketed and brazed plate heat exchangers
  • 13.10.1 Single-phase liquid flow (Martin, 1996)
  • 13.10.2 Evaporating fluid (Han et al., 2003a)
  • 13.10.3 Condensing fluid (Han et al., 2003b)
  • Nomenclature
  • Roman
  • Greek
  • Subscripts
  • References
  • Three - Fields of application
  • 14 - Geothermal energy exploitation with Organic Rankine Cycle technologies
  • 14.1 Introduction: geothermal resource exploitation
  • 14.1.1 Resource classification
  • 14.1.2 Resources and plant locations
  • 14.1.3 Technological options, theoretical analysis
  • 14.1.3.1 Direct cycles
  • Thermodynamics
  • Technical and operational features
  • 14.1.3.2 Binary cycles
  • Pure water (Rankine cycle)
  • Kalina
  • Organic Rankine cycle
  • 14.2 Geothermal ORC binary plants
  • 14.2.1 Fluid selection
  • 14.2.2 Cycle selection
  • 14.2.2.1 Bottoming and combined cycles
  • 14.2.2.2 Regeneration
  • 14.2.2.3 Turbine technology
  • 14.2.3 Fluid and cycle selection, a numerical example
  • 14.3 Geothermal-specific features and case studies
  • 14.3.1 Geothermal-specific design criteria and plant features
  • 14.3.1.1 Scaling and corrosion
  • 14.3.1.2 Corrosive environment
  • 14.3.1.3 Cooling system
  • 14.3.1.4 Market- and project-related features
  • 14.3.2 Examples of existing geothermal ORC power plants
  • 14.3.2.1 Single-pressure level
  • Celikler Jeotermal - Pamukören (courtesy of Exergy)
  • 14.3.2.2 Double-pressure level with one turbine
  • Akca Enerji - Tosunlar (courtesy of Exergy)
  • 14.3.2.3 Triple-pressure level
  • McGuinness Hills (courtesy of Ormat)
  • 14.3.2.4 Bottoming cycle
  • Miravalles V (courtesy of Ormat)
  • 14.3.2.5 Combined cycle
  • Rotokawa (courtesy of Ormat)
  • Kizildere II (courtesy of Zorlu)
  • References
  • 15 - Biomass-fired Organic Rankine Cycle combined heat and power systems
  • 15.1 Introduction
  • 15.2 State of the art of biomass-fired Organic Rankine Cycle combined heat and power plant
  • 15.2.1 The design concept of a combined heat and power biomass-fired plant
  • 15.2.2 The control system of the plant
  • 15.2.3 The electrical grid connection
  • 15.2.4 The plant components of a conventional biomass-fired Organic Rankine Cycle with a thermal oil boiler
  • 15.2.4.1 Lay out and operational scheme
  • 15.2.4.2 Fuel storage and handling
  • 15.2.4.3 Biomass combustion section
  • Combustion chamber
  • Reciprocating grate
  • Primary and secondary combustion air
  • Gas recirculation
  • Ash removal and handling
  • 15.2.4.4 Thermal oil boiler
  • 15.2.4.5 Air preheater
  • 15.2.4.6 Thermal oil circuit and emergency cooling system
  • 15.2.4.7 Exhaust gas treatments and emissions control
  • 15.2.4.8 ORC and boundary interfaces
  • 15.2.4.9 Captive consumptions
  • 15.2.4.10 Comparison with alternative technologies
  • Alternative technologies
  • Conventional Rankine cycles
  • Biomass gasification and internal combustion engines
  • Stirling cycles
  • External fired gas turbines
  • 15.2.4.11 Recent evolutions and future developments of biomass-fired Organic Rankine Cycles
  • Large size Organic Rankine Cycles in biomass-fired plants
  • The direct exchange biomass-fired Organic Rankine Cycle power plants
  • Gas turbine and Organic Rankine Cycle through gasification and through external fired biomass combustion
  • 15.3 Applications and references
  • 15.3.1 Extra potentiality of the biomass-fired Organic Rankine Cycle
  • 15.3.2 Fields of application
  • 15.3.2.1 District heating (and cooling)
  • 15.3.2.2 Pellet production
  • 15.3.2.3 District heating and pellet production, a smart potential integration in the European market
  • 15.3.2.4 Timber and wood panel industry
  • 15.3.2.5 Full electric applications
  • 15.4 Current market overview and European policy: economic and environmental considerations
  • 15.4.1 The current situation of biomass combined heat and power plants in Europe
  • 15.4.2 Social impact of electricity from biomass combined heat and power
  • 15.4.3 Future markets for biomass-fired Organic Rankine Cycles
  • 15.5 Economic feasibility and sensitivity
  • 15.5.1 Dimensioning a biomass-fired Organic Rankine Cycle combined heat and power plant
  • 15.5.2 A differential analysis on the specific cost of electricity production
  • 15.5.3 Main economic and financial parameters considered
  • 15.5.4 Specific cost of electricity production per sizes
  • 15.5.4.1 Sensitivity to the investment costs
  • 15.5.4.2 Sensitivity to thermal utilization
  • 15.6 Conclusions and final considerations
  • Further reading
  • 16 - Solar thermal powered Organic Rankine Cycles
  • 16.1 Introduction to solar Organic Rankine Cycle systems
  • 16.1.1 Applications-grid connected power generation, desalinization, distributed power generation, cogeneration, and hybrid systems
  • 16.1.1.1 Grid connected power generation
  • 16.1.1.2 Distributed power generation
  • 16.1.1.3 Desalination
  • 16.1.1.4 Irrigation
  • 16.1.1.5 Hybrid solar organic Rankine cycle
  • 16.1.2 Meteorological and solar resource dynamics
  • 16.1.2.1 Sunlight energy
  • 16.1.2.2 The solar spectrum
  • 16.1.2.3 Tracking
  • 16.1.2.4 Intermittency
  • 16.1.2.5 Solar resource maps
  • 16.1.3 Installed capacity-survey of existing sites
  • 16.2 Solar Organic Rankine Cycle components and architecture
  • 16.2.1 Solar thermal collectors
  • 16.2.1.1 Salt-gradient solar pond
  • 16.2.1.2 Flat plate collector
  • 16.2.1.3 Evacuated tube collector
  • 16.2.1.4 Parabolic trough collector
  • 16.2.1.5 Linear Fresnel collector
  • 16.2.1.6 Compound parabolic collector
  • 16.2.1.7 Parabolic dish reflector
  • 16.2.1.8 Solar central tower
  • 16.2.2 Heat transfer fluid
  • 16.2.3 Thermal energy storage
  • 16.2.3.1 Sensible thermal energy storage
  • Single buffer
  • Two-tank storage
  • Thermocline storage
  • 16.2.3.2 Latent thermal energy storage
  • 16.2.3.3 Thermochemical thermal energy storage
  • 16.3 Solar Organic Rankine Cycle systems
  • 16.3.1 Design and specification
  • 16.3.2 Steady state performance prediction of solar ORC systems
  • 16.3.2.1 Solar collector modeling
  • 16.3.3 Dynamic performance prediction of solar organic Rankine cycles with thermal energy storage using typical meteorological yea ...
  • 16.3.3.1 Conservation of energy and thermal capacitance
  • 16.3.3.2 Selection of model timestep
  • 16.3.3.3 Control strategy
  • Typical startup sequence
  • Example operational considerations
  • 16.3.4 Solar Organic Rankine Cycle optimization and economics
  • 16.3.5 Application engineering and system analysis
  • 16.3.5.1 Design of Organic Rankine Cycle systems for use with solar collectors
  • 16.3.6 Specific and levelized costs of power generation
  • 16.3.7 Optimization tools
  • 16.3.8 Case study: hybrid solar Organic Rankine Cycle microgrid system
  • References
  • 17 - Organic Rankine Cycle systems for large-scale waste heat recovery to produce electricity
  • 17.1 The comparison between Organic Rankine Cycles and steam Rankine Cycles
  • 17.1.1 Organic Rankine Cycles are able to obtain higher thermal efficiency than steam Rankine Cycles
  • 17.1.2 Turbo machinery of an Organic Rankine Cycle is less complicated and easier to develop than that of a steam Rankine Cycle
  • 17.1.3 Organic Rankine Cycle systems are much less complex than steam Rankine Cycle systems in low-grade heat conversions
  • 17.2 The application of Organic Rankine Cycles for industrial waste heat recovery
  • 17.3 The application of Organic Rankine Cycles for waste heat recovery on ships
  • 17.4 The application of Organic Rankine Cycles for waste heat recovery from Distributed Energy Systems
  • 17.5 The application of Organic Rankine Cycles for waste heat recovery from recompression stations along pipelines
  • References
  • 18 - Micro-Organic Rankine Cycle systems for domestic cogeneration
  • 18.1 Requirements and main features of domestic Organic Rankine Cycle systems
  • 18.2 Existing models and prototypes and comparison with solutions based on Stirling engines
  • 18.3 Main technical features of domestic Organic Rankine Cycle components
  • 18.4 System integration
  • 18.4.1 Solar driven domestic Organic Rankine Cycle
  • 18.4.2 Trigeneration systems based on Organic Rankine Cycle and ejector cycles
  • 18.5 Conclusions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

255,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok