Volcanic Ash

Hazard Observation
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 24. Mai 2016
  • |
  • 300 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100424-1 (ISBN)
 

Volcanic Ash: Hazard Observation presents an introduction followed by four sections, each on a separate topic and each containing chapters from an internationally renowned pool of authors. The introduction provides a volcanological context for ash generation that sets the stage for the development and interpretation of techniques presented in subsequent sections.

The book begins with an examination of the methods to characterize ash deposits on the ground, as ash deposits on the ground have generally experienced some atmospheric transport. This section will also cover basic information on ash morphology, density, and refractive index, all parameters required to understand and analyze assumptions made for both in situ measurements and remote sensing ash inversion techniques. Sections two, three, and four focus on methods for observing volcanic ash in the atmosphere using ground-based, airborne, and spaceborne instruments respectively.

Throughout the book, the editors showcase not only the interdisciplinary nature of the volcanic ash problem, but also the challenges and rewards of interdisciplinary endeavors. Additionally, by bringing together a broad perspective on volcanic ash studies, the book not only ties together ground-, air-, academic, and applied approaches to the volcanic ash problem, but also engages with other scientific communities interested in particulate transport.


  • Includes recent case studies highlighting the impact of volcanic ash, making methods used for observation more accessible to the reader
  • Contains advances in volcanic ash observation that can be used in other remote sensing applications
  • Presents a cross-disciplinary approach that includes not only methods of tracking and measuring ash in the atmosphere, but also of the fundamental science that supports methodological application and interpretation
  • Edited by an internationally recognized team with a range of expertise within the field of volcanic ash
  • Englisch
  • London
Elsevier Science
  • 32,65 MB
978-0-08-100424-1 (9780081004241)
0081004249 (0081004249)
weitere Ausgaben werden ermittelt
  • Front Cover
  • VOLCANIC ASH
  • VOLCANIC ASH
  • Copyright
  • Contents
  • List of Contributors
  • 1 - Introduction
  • 1. VOLCANIC ASH: HAZARD OBSERVATION
  • 2 - Volcanic Ash: Generation and Spatial Variations
  • 1. INTRODUCTION
  • 2. AN OVERVIEW OF ASH FORMATION AND ERUPTION STYLES
  • 2.1 Ash Formation
  • 2.2 Eruptions and Tephra Deposits
  • 3. TEPHRA COMPONENTS AND COMPOSITION
  • 3.1 Composition
  • 3.2 Ash Components
  • 4. SPATIAL AND TEMPORAL VARIATIONS IN THE GRAIN SIZE OF VOLCANIC DEPOSITS
  • 4.1 Deposit Thickness and Grain Size
  • 4.2 Ultra-Distal Ash
  • 4.3 Airborne Ash Measurements
  • 5. ASH SHAPE, DENSITY, AND SETTLING VELOCITY
  • 5.1 Ash Shape
  • 5.2 Particle Density
  • 5.3 Settling Velocities
  • 6. IMPLICATIONS FOR ASH TRACKING AND FORECASTING
  • 3 - Observations of Ash on the Ground
  • 1 - Field Observations of Tephra Fallout Deposits
  • 1. INTRODUCTION
  • 2. FALLOUT DEPOSITS
  • 3. PIECING TOGETHER THE GEOLOGICAL RECORD OF PAST ERUPTIONS
  • 4. MEASURING THE SCALE OF ERUPTIONS
  • 5. MAPPING FALLOUT DEPOSITS
  • 6. VOLCANO METRICS: ERUPTION SIZE
  • 7. VOLCANO METRICS: ERUPTION INTENSITY
  • 8. QUANTIFYING ERUPTED VOLUMES FROM SPARSE FIELD OBSERVATIONS
  • 9. OBSERVATIONS OF HISTORICAL AND ANCIENT FALLOUT DEPOSITS
  • 10. ERRORS AND UNCERTAINTIES
  • 11. PRESERVATION POTENTIAL AND CRYPTOTEPHRA
  • 12. CONCLUSIONS
  • Acknowledgments
  • 2 - Aerodynamics of Volcanic Particles: Characterization of Size, Shape, and Settling Velocity
  • 1. INTRODUCTION
  • 2. PARTICLE SIZE CHARACTERIZATION
  • 2.1 Volume
  • 2.2 Surface Area
  • 3. PARTICLE SHAPE CHARACTERIZATION
  • 3.1 Form
  • 3.2 Sphericity
  • 4. TERMINAL VELOCITY AND DRAG COEFFICIENT OF VOLCANIC PARTICLES
  • 4.1 Evaluation of Drag Coefficient Models
  • 4.2 Variation of Drag Coefficient and Terminal Velocity With Particle Size
  • 5. DISCUSSION AND CONCLUDING REMARKS
  • Acknowledgments
  • 3 - Ash Aggregation in Volcanic Clouds
  • 1. INTRODUCTION
  • 2. ASH AGGREGATE TYPES
  • 2.1 Particle Clusters
  • 2.2 Accretionary Pellets
  • 2.3 Liquid Ash Pellets
  • 3. OBSERVATIONS OF ASH AGGREGATES FALLING FROM RECENT VOLCANIC CLOUDS
  • 3.1 May 18, 1980, Eruption of Mount St. Helens, USA
  • 3.2 1995-99 Eruptions at Soufriere Hills Volcano, Montserrat
  • 3.3 Icelandic Eruptions of Eyjafjallajökull in 2010 and Grímsvötn in 2011
  • 3.4 March 2009 Eruptions of Redoubt Volcano, Alaska, USA
  • 4. TEXTURAL CHARACTERISTICS OF AGGREGATED ASH DEPOSITS
  • 4.1 Characteristics of Aggregates in Ash Fall Deposits
  • 4.2 Characteristics of Aggregates in Pyroclastic Density Current Deposits
  • 5. OVERVIEW OF AGGREGATE FORMATION IN VOLCANIC ASH CLOUDS
  • 5.1 Binding Mechanisms
  • 5.2 Cloud Microphysical Processes
  • 6. SUMMARY
  • 4 - Contribution of Fine Ash to the Atmosphere From Plumes Associated With Pyroclastic Density Currents
  • 1. INTRODUCTION
  • 2. OVERVIEW
  • 2.1 Ignimbrite-Forming Eruptions
  • 2.2 Plinian Eruptions
  • 2.3 Intermediate Size Eruptions
  • 2.4 Dome Collapse Events
  • 2.5 Summary
  • 3. CHARACTERISTICS OF CO-PYROCLASTIC DENSITY CURRENT DEPOSITS
  • 3.1 Stratigraphy
  • 3.2 Geometry and Volume of Co-pyroclastic Density Current and Mixed Fallout Deposits
  • 3.3 Componentry of Co-pyroclastic Density Current Deposits
  • 3.4 Grain Size of Co-pyroclastic Density Current and Mixed Fallout Deposits
  • 3.4.1 Methods for Analyzing Particle Size Distributions of Fallout Deposits
  • 3.4.2 Grain Size Characteristics of Co-pyroclastic Density Current and Mixed Fallout Deposits
  • 3.4.3 Origin of the Bimodality in Mixed Fallout Deposits
  • 4. CONTROLS ON CO-PYROCLASTIC DENSITY CURRENT PLUME FORMATION AND DYNAMICS
  • 4.1 Source Conditions
  • 4.2 Insights from Numerical Models for Column Dynamics
  • 5. DISPERSION AND SEDIMENTATION OF CO-PYROCLASTIC DENSITY CURRENT ASH
  • 5.1 Importance of Enhanced Sedimentation
  • 5.2 Source Parameters for Numerical Modeling of Dispersion and Sedimentation
  • 5.3 Co-pyroclastic Density Current Plume Retrieval by Satellite Infrared Methods
  • 6. CONCLUSIONS
  • Acknowledgments
  • 4 - Observations of Ash in the Air
  • 5 - In Situ Observations of Airborne Ash From Manned Aircraft
  • 1. INTRODUCTION
  • 2. INSTRUMENTATION AND SAMPLING
  • 3. BASIC CONSIDERATIONS FOR CHOICE OF AIRCRAFT
  • 4. CASE STUDIES: EYJAFJALLAJÖKULL, GRÍMSVÖTN, SAKURAJIMA, AND HOLUHRAUN CAMPAIGNS
  • 4.1 Eyjafjallajökull
  • 4.2 Grímsvötn
  • 4.3 Sakurajima
  • 4.4 Holuhraun
  • 5. RESULTS, DATA ANALYSIS, AND VISUALIZATION
  • 6. PLUME PHYSICS AND FITTING TO MODELS
  • 7. CONCLUSIONS
  • 6 - Electrostatics and In Situ Sampling of Volcanic Plumes
  • 1. INTRODUCTION
  • 2. VOLCANIC LIGHTNING AND CHARGE IN VOLCANIC PLUMES
  • 2.1 Surface-Based In Situ Electrostatic Measurements
  • 2.2 Volcanic Lightning Detection
  • 2.3 Measurements of Weakly Charged Plumes
  • 2.4 Summary of Plume Charging Observations
  • 3. CHARGING MECHANISMS AND LABORATORY STUDIES OF CHARGING
  • 3.1 Tribocharging
  • 3.2 Fractoemission
  • 3.3 Natural Radioactivity
  • 3.4 Interactions With Water
  • 3.5 Plume Interactions With the Ambient Atmosphere
  • 4. IN SITU SAMPLING OF VOLCANIC PLUMES WITH METEOROLOGICAL SOUNDING BALLOONS
  • 4.1 Radiosonde Measurements of the Eyjafjallajökull Plume
  • 4.2 Comparison of Two Volcanic Plumes Aloft
  • 4.3 Broader Applications of Radiosondes to Volcanic Plume Measurements
  • 5. CONCLUSIONS AND FUTURE MEASUREMENTS
  • Acknowledgments
  • 7 - In Situ Observations of Volatile and Nonvolatile Particle Size Distributions From Balloon-Borne Platforms
  • 1. INTRODUCTION
  • 2. AEROSOL PROFILES WITH HEATED DESCENTS FOLLOWING PINATUBO
  • 3. EVOLUTION OF PARTICLE CONCENTRATION AS A FUNCTION OF SIZE FOLLOWING PINATUBO
  • 4. PROFILES OF AEROSOL USING HEATED AND AMBIENT INTAKES FOLLOWING KELUD
  • 5. CONCLUSIONS
  • Acknowledgments
  • 5 - Aircraft and Ground-Based Remote Sensing of Ash
  • 8 - Detection of Airborne Volcanic Ash Using Radar
  • 1. INTRODUCTION
  • 2. THEORETICAL BACKGROUND
  • 2.1 Scattering of Electromagnetic Waves at Mono- and Polydisperse Particle Ensembles
  • 2.2 The Radar Equation
  • 2.3 Polarization
  • 2.4 Pulsed and Continuous Wave: Measuring Distance or Velocity
  • 2.5 Pulse-Doppler and FMCW: Measuring Distance and Velocity
  • 3. OBSERVATIONS OF VOLCANIC ASH USING RADAR
  • 3.1 Weather Radar Observations
  • 3.1.1 Volcanic Ash Detected by Weather Radar
  • 3.1.1.1 Early Observations
  • 3.1.1.2 The Mt. St. Helens Eruption, 1980, 1982
  • 3.1.1.3 The Mt. Pinatubo 1991 and Mt. Spurr 1992 Eruptions
  • 3.1.1.4 Observations of Eruptions in Japan
  • 3.1.1.5 Eruptions in Iceland
  • 3.1.1.6 The Te Maari Eruption 2012 in New Zealand
  • 3.1.1.7 Estimating the Particle Size Distribution from Radar Observation
  • 3.2 Dedicated Short Range Portable or Semiportable Doppler Radar Systems
  • 3.2.1 Observations at Arenal Volcano
  • 3.2.2 Observations at Santiaguito Volcano
  • 3.2.3 Continuous Monitoring of Volcanoes With Dedicated Radar Systems
  • 3.3 Direct Ashfall Measurements
  • 3.4 Limitations of Radar Systems for Observation of Volcanic Ash
  • 4. OUTLOOK AND CONCLUSION
  • Acknowledgments
  • 9 - Lidar Observations of Volcanic Particles
  • 1. INTRODUCTION
  • 2. HISTORY OF LIDAR IN THE CONTEXT OF VOLCANIC ERUPTIONS
  • 3. AEROSOL LIDAR TECHNIQUES
  • 4. THE RETRIEVAL OF CONCENTRATIONS AND THE SYNERGY WITH SUN PHOTOMETERS
  • 5. LIDAR OBSERVATIONS OF VOLCANIC PARTICLES
  • 5.1 Stratospheric Measurements
  • 5.2 Tropospheric Measurements
  • 5.3 Intensive Optical Parameters
  • 6. CONCLUSIONS AND PERSPECTIVES
  • 10 - Quantitative Ground-Based Imaging of Volcanic Ash
  • 1. INTRODUCTION
  • 2. INFRARED GROUND-BASED IMAGING OF VOLCANIC ASH
  • 2.1 Volcanic Ash Detection Using Mid-Infrared Radiation
  • 2.2 Ash Particle Size Distributions and Deposition Rate
  • 2.3 A First Example of Ground-Based Thermal Infrared Ash Imaging
  • 2.4 Recent Applications of Ground-Based Infrared Imaging Techniques for Ash Detection
  • 3. ULTRAVIOLET GROUND-BASED IMAGING OF VOLCANIC ASH
  • 3.1 Remote Sensing of Ash From Space With Ultraviolet Imagers
  • 3.2 Ground-Based Quantifications of Ash Emissions With Ultraviolet Imaging Systems
  • 3.3 Empirical Observations of Ash Absorptions in the Ultraviolet
  • 4. CONCLUSIONS
  • Acknowledgments
  • 6 - Observing Airborne Ash From Space
  • 11 - Infrared Sounding of Volcanic Ash
  • 1. INFRARED RADIATION AND VOLCANIC ASH
  • 1.1 Volcanic Aerosols and Trace Gases
  • 1.2 Forward Modeling
  • 1.3 Sensitivity Parameters
  • 1.3.1 Composition and Particle Shape
  • 1.3.2 Loading and Altitude
  • 1.3.3 Particle Size and Size Distribution
  • 1.3.4 Atmospheric and Surface Parameters
  • 1.4 Example Observations
  • 2. ASH DETECTION
  • 2.1 Broadband
  • 2.2 Hyperspectral
  • 3. RETRIEVAL ALGORITHMS
  • 4. VALIDATION
  • 4.1 Instrument-to-Instrument Intercomparisons
  • 4.2 Verification Against Independent Observations
  • 4.3 Comparisons With Model Simulations
  • 5. OUTLOOK
  • Acknowledgments
  • 12 - Ultraviolet Satellite Measurements of Volcanic Ash
  • 1. INTRODUCTION
  • 2. ULTRAVIOLET ASH DETECTION AND RETRIEVAL ALGORITHMS
  • 2.1 The Ultraviolet Aerosol Index
  • 2.2 Ultraviolet Ash Optical Depth and Mass Retrievals
  • 2.2.1 Multispectral Ultraviolet Volcanic Ash Retrievals
  • 2.2.2 Ash Optical Properties in the Ultraviolet
  • 2.2.3 Volcanic Ash Particle Shape and Sizes
  • 2.2.4 Hyperspectral Ultraviolet Volcanic Ash Retrievals
  • 3. CASE STUDIES
  • 3.1 The 2010 Eyjafjallajökull Eruption
  • 3.2 The 2011 Grimsvötn Eruption
  • 3.3 The 2011 Cordón Caulle Eruption
  • 4. CONCLUSION
  • 13 - Applications of Satellite Observations of Volcanic Ash in Atmospheric Dispersion Modeling
  • 1. INTRODUCTION
  • 2. INTERPRETATION AND EVALUATION OF MODEL OUTPUT
  • 3. DATA ASSIMILATION
  • 3.1 Data Insertion
  • 3.2 Inversion Modeling
  • 3.3 Variational Data Assimilation
  • 3.4 Probabilistic Methods
  • 4. UNCERTAINTIES, LIMITATIONS, AND ASSUMPTIONS
  • 5. CONCLUSIONS
  • APPENDIX A
  • Acknowledgments
  • 7 - Conclusions and Future Directions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • U
  • V
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok