Unconventional Oil and Gas Resources Handbook

Evaluation and Development
 
 
Gulf Professional Publishing
  • 1. Auflage
  • |
  • erschienen am 6. Oktober 2015
  • |
  • 550 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-802536-9 (ISBN)
 
Unconventional Oil and Gas Resources Handbook: Evaluation and Development is a must-have, helpful handbook that brings a wealth of information to engineers and geoscientists. Bridging between subsurface and production, the handbook provides engineers and geoscientists with effective methodology to better define resources and reservoirs. Better reservoir knowledge and innovative technologies are making unconventional resources economically possible, and multidisciplinary approaches in evaluating these resources are critical to successful development. Unconventional Oil and Gas Resources Handbook takes this approach, covering a wide range of topics for developing these resources including exploration, evaluation, drilling, completion, and production. Topics include theory, methodology, and case histories and will help to improve the understanding,integrated evaluation, and effective development of unconventional resources.
  • Presents methods for a full development cycle of unconventional resources, from exploration through production
  • Explores multidisciplinary integrations for evaluation and development of unconventional resources and covers a broad range of reservoir characterization methods and development scenarios
  • Delivers balanced information with multiple contributors from both academia and industry
  • Provides case histories involving geological analysis, geomechanical analysis, reservoir modeling, hydraulic fracturing treatment, microseismic monitoring, well performance and refracturing for development of unconventional reservoirs


Dr. Zee Ma is currently a Scientific Advisor in Geosciences and Mathematical Modeling for Schlumberger, specializing in integrated reservoir modeling and hydrocarbon resource evaluation for both conventional and unconventional plays. Prior to joining Schlumberger, he worked for several other major oil companies and service providers for over 28 years in Europe and the US, including Total and ExxonMobil, and served many years as leader for Reservoir Characterization, Static and Dynamic Reservoir Modeling Special Interest Groups. Ma has provided technical consultancy and training for many oil companies and institutions around the world, and has worked on a number of large worldwide projects, including North America's unconventional oil and gas fields, reservoirs of various depositional environments in West Africa, Gulf of Mexico, Mideast, Canada, South America, and North Sea. Ma has received numerous awards, including the Schlumberger Gold Award and Chairman's Award, and Best Paper from Mathematical Geosciences. He has published numerous papers in geophysics, geology, petrophysics, geostatistics, petroleum engineering, economics, and applied mathematics, and served as the lead Editor of the AAPG Memoir 96. Ma earned four degrees - a Ph.D. in Mathematical Geology, Geostatistics, and Remote Sensing from the Institute National Polytechnique de Lorraine (France), a M.Sc. in Geostatistics from the Ecole National Superior de Mine de Paris (now ParisTech), a M.Sc. in Geologic Engineering from University of Lorraine in France, and a B.Sc. in Geology from the China University of Geosciences.
  • Englisch
  • USA
Elsevier Science
  • 22,48 MB
978-0-12-802536-9 (9780128025369)
0128025360 (0128025360)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Unconventional Oil and Gas Resources Handbook Evaluation and Development
  • Copyright
  • Contents
  • List of Contributors
  • Preface
  • PART 1 - GENERAL TOPICS
  • 1 - UNCONVENTIONAL RESOURCES FROM EXPLORATION TO PRODUCTION
  • 1.1 INTRODUCTION
  • 1.2 EXPLORATION AND EARLY APPRAISAL
  • 1.2.1 PETROLEUM SYSTEM ANALYSIS AND MODELING
  • 1.2.2 RESOURCE PROSPECTING AND RANKING
  • 1.3 EVALUATION
  • 1.3.1 MINERALOGICAL COMPOSITION
  • 1.3.2 PORES
  • 1.3.3 HYDROCARBON SATURATION AND TYPES
  • 1.3.4 PERMEABILITY
  • 1.3.5 COMPLETION QUALITY
  • 1.3.6 PRESSURE
  • 1.3.7 INTEGRATED EVALUATION
  • 1.4 DRILLING
  • 1.5 COMPLETION AND STIMULATION
  • 1.5.1 FRACTURE GEOMETRY AND COMPLEXITY
  • 1.5.2 FRACTURING FLUID AND PROPPANT
  • 1.5.3 FRACTURING STAGES
  • 1.6 PRODUCTION
  • 1.6.1 PRODUCTION DRIVERS
  • 1.6.2 CALIBRATING THE DRIVERS TO PRODUCTION
  • 1.6.3 MICROSEISMIC MONITORING
  • 1.6.4 REFRACTURING TREATMENT
  • 1.6.5 ARTIFICIAL LIFT
  • 1.6.6 TRACER, LEAKOFF, AND FLOWBACK
  • 1.6.7 HEAVY OIL AND PRODUCTION FROM OIL SANDS
  • 1.6.8 WATER MANAGEMENT
  • 1.7 UNCONVENTIONAL GLOBALIZATION
  • 1.7.1 GLOBAL UNCONVENTIONAL RESOURCES
  • 1.7.2 NATIONAL SECURITY MATTER AND ENVIRONMENTAL CONCERNS
  • 1.7.3 CHALLENGES IN GLOBAL DEVELOPMENT OF UNCONVENTIONAL RESOURCES
  • 1.7.3.1 Uncertainty and Risk in Resource Estimates
  • 1.7.3.2 Technologies for Developing Difficult Unconventional Resources
  • 1.7.3.3 Water Stress
  • 1.7.3.4 Environmental Considerations
  • 1.8 CONCLUSIONS
  • LIST OF ABBREVIATIONS
  • UNITS
  • Acknowledgments
  • REFERENCES
  • 2 - WORLD RECOVERABLE UNCONVENTIONAL GAS RESOURCES ASSESSMENT
  • 2.1 INTRODUCTION
  • 2.1.1 PETROLEUM RESOURCES MANAGEMENT SYSTEM (PRMS)
  • 2.1.2 ENERGY INFORMATION ADMINISTRATION (EIA) CLASSIFICATION SYSTEM
  • 2.1.3 BASIN TYPES AND GLOBAL DISTRIBUTION OF BASINS
  • 2.1.4 MONTE CARLO PROBABILISTIC APPROACH
  • 2.2 METHODOLOGY
  • 2.3 GLOBAL UNCONVENTIONAL GAS ORIGINAL GAS-IN-PLACE ASSESSMENT
  • 2.3.1 CBM OGIP
  • 2.3.2 TIGHT GAS OGIP
  • 2.3.3 SHALE GAS ORIGINAL GAS-IN-PLACE
  • 2.4 TECHNICALLY RECOVERABLE RESOURCES RECOVERY FACTOR
  • 2.4.1 COAL BED METHANE RECOVERY FACTORS
  • 2.4.2 TIGHT GAS RECOVERY FACTORS
  • 2.4.3 SHALE GAS RECOVERY FACTORS
  • 2.5 GLOBAL RECOVERABLE UNCONVENTIONAL GAS RESOURCE EVALUATION
  • 2.5.1 COAL BED METHANE TECHNICALLY RECOVERABLE RESOURCES
  • 2.5.2 TIGHT GAS TECHNICALLY RECOVERABLE RESOURCES
  • 2.5.3 SHALE GAS TRR
  • 2.6 DISCUSSION
  • 2.7 CONCLUSION
  • NOMENCLATURE
  • REFERENCES
  • 3 - GEOCHEMISTRY APPLIED TO EVALUATION OF UNCONVENTIONAL RESOURCES
  • 3.1 INTRODUCTION
  • 3.1.1 SUBSURFACE EVOLUTION OF ORGANIC MATTER
  • 3.1.2 CONVENTIONAL VERSUS UNCONVENTIONAL RESOURCES
  • 3.1.3 EMPIRICAL MEASURES OF SWEET SPOTS
  • 3.2 DISCUSSION
  • 3.2.1 ORGANIC GEOCHEMICAL AND PETROPHYSICAL CHARACTERIZATION
  • 3.2.1.1 Rock-Eval Pyrolysis
  • 3.2.1.2 Total Organic Carbon
  • 3.2.1.3 Geochemical Methods for TOC
  • 3.2.1.4 Indirect Wireline TOC
  • 3.2.1.5 Direct Wireline TOC
  • 3.2.2 ORGANIC GEOCHEMICAL LOGS AND ANCILLARY TOOLS
  • 3.2.2.1 Van Krevelen Diagrams
  • 3.2.2.2 TOC versus S2 Plots
  • 3.2.2.3 Organic Petrography
  • 3.2.3 INORGANIC GEOCHEMICAL LOGS
  • 3.2.4 FLUID ADSORPTION IN UNCONVENTIONAL RESERVOIRS
  • 3.2.4.1 Quantifying Adsorption under Reservoir Conditions
  • 3.2.5 CONTRIBUTION OF ADSORBED GAS TO GAS-IN-PLACE AND PRODUCTION
  • 3.2.6 HYDROCARBON GENERATION, EXPULSION, AND RETENTION
  • 3.2.7 STABLE CARBON ISOTOPE ROLLOVER
  • 3.2.8 EFFECT OF TRANSIENT FLOW ON GEOCHEMICAL PARAMETERS
  • 3.2.9 MASS BALANCE AND HYDROCARBON GAS RETENTION EFFICIENCY
  • 3.2.10 BASIN AND PETROLEUM SYSTEM MODELING
  • 3.2.10.1 SARA Modeling
  • 3.2.11 EXAMPLE OF BPSM MODELING FOR SHALE GAS
  • 3.2.12 KEROGEN ANALYSES FOR STRUCTURAL ELUCIDATION
  • 3.2.12.1 Elemental Analysis
  • 3.2.12.2 Nuclear Magnetic Resonance Spectroscopy
  • 3.2.12.3 Infrared spectroscopy
  • 3.2.12.4 X-ray Absorption Near-Edge Structure Spectroscopy
  • 3.2.12.5 Other Methods
  • 3.2.13 KEROGEN STRUCTURE THROUGH ASPHALTENE CHEMISTRY
  • 3.3 CONCLUSIONS
  • 3.4 APPENDIX: KEROGEN TYPES AND PREPARATION
  • 3.4.1 KEROGEN TYPES
  • 3.4.2 KEROGEN PREPARATION
  • Acknowledgments
  • REFERENCES
  • 4 - PORE-SCALE CHARACTERIZATION OF GAS FLOW PROPERTIES IN SHALE BY DIGITAL CORE ANALYSIS
  • 4.1 INTRODUCTION
  • 4.2 GAS SHALE CHARACTERIZATION BY DCA
  • 4.2.1 IMAGING POROUS SAMPLES
  • 4.2.2 PORE-SCALE CHARACTERIZATION AND RECONSTRUCTION
  • 4.2.3 MODELING PORE-SCALE PHYSICOCHEMICAL PROCESSES
  • 4.2.4 DETERMINATION OF MACROSCOPIC PROPERTIES FOR A SAMPLE
  • 4.3 GAS FLOW BEHAVIORS IN SHALE PORES AND PORE-NETWORK MODELS
  • 4.3.1 GAS FLOW REGIMES
  • 4.3.2 BEHAVIORS OF APPARENT GAS PERMEABILITY
  • 4.4 SURFACE ADSORPTION/DESORPTION AND AN EFFECTIVE MULTILAYER ADSORPTION MODEL
  • 4.4.1 BASICS OF ADSORPTION AND DESORPTION
  • 4.4.2 GAS-SOLID ADSORPTION MODELS
  • 4.4.3 HETEROGENEOUS MULTILAYER GAS ADSORPTION AND FREE GAS FLOW
  • 4.5 AGGREGATED EFFECT ON THE PREDICTED GAS PERMEABILITY
  • 4.6 CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 5 - WIRELINE LOG SIGNATURES OF ORGANIC MATTER AND LITHOFACIES CLASSIFICATIONS FOR SHALE AND TIGHT CARBONATE RESERVOIRS
  • 5.1 INTRODUCTION AND OVERVIEW
  • 5.1.1 LITHOFACIES IN SHALE RESERVOIRS
  • 5.1.2 OVERVIEW OF WIRELINE LOG RESPONSES TO ORGANIC MATTER
  • 5.1.3 SCOPE
  • 5.2 REVIEW OF LITHOFACIES CLASSIFICATION IN CONVENTIONAL FORMATION EVALUATION
  • 5.3 TIGHT CARBONATE RESERVOIRS WITHOUT PRESENCE OF ORGANIC SHALE
  • 5.4 SHALE RESERVOIRS WITH THE PRESENCE OF CARBONATE LITHOFACIES AND WITHOUT SILICEOUS LITHOFACIES
  • 5.5 FORMATIONS WITH A MIXTURE OF CLAYEY, SILICEOUS, CARBONATE AND ORGANIC LITHOFACIES
  • 5.6 MULTILEVEL CLUSTERING OF LITHOFACIES AND ROCK TYPES
  • 5.7 CONCLUSIONS
  • Acknowledgment
  • REFERENCES
  • 5 . APPENDIX A: A TUTORIAL ON PRINCIPAL COMPONENT ANALYSIS
  • 6 - THE ROLE OF PORE PROXIMITY IN GOVERNING FLUID PVT BEHAVIOR AND PRODUCED FLUIDS COMPOSITION IN LIQUIDS-RICH SHAL ...
  • 6.1 INTRODUCTION
  • 6.2 PORE CONFINEMENT EFFECTS ON FLUID PROPERTIES
  • 6.2.1 EFFECTS OF CONFINEMENT ON ALKANE CRITICAL PROPERTIES
  • 6.2.2 EFFECT OF CONFINEMENT ON PHASE BEHAVIOR OF MULTICOMPONENT MIXTURES
  • 6.3 MULTICOMPONENT FLUID TRANSPORT IN NANOPORES
  • 6.3.1 COMPOSITIONAL VARIATIONS IN PRODUCED FLUIDS
  • 6.3.1.1 Synthetic Oil Case Study
  • 6.3.1.2 Black Oil Case Study
  • 6.4 IMPLICATIONS OF PORE PROXIMITY ON WELL DRAINAGE AREAS AND PRODUCTIVITY
  • 6.4.1 DESCRIPTION OF THE NUMERICAL SIMULATION MODEL
  • 6.5 MODIFICATIONS TO EXISTING EQUATIONS-OF-STATE
  • 6.6 IMPACT TO PRODUCERS
  • 6.7 SUMMARY AND CONCLUSIONS
  • REFERENCES
  • 7 - GEOMECHANICS FOR UNCONVENTIONAL RESERVOIRS
  • 7.1 INTRODUCTION
  • 7.2 MECHANICAL EARTH MODEL
  • 7.2.1 MECHANICAL PROPERTIES
  • 7.2.2 ROCK STRENGTH
  • 7.2.3 PORE PRESSURE
  • 7.2.4 STRESSES
  • 7.2.4.1 Vertical Stress
  • 7.2.4.2 Minimum and Maximum Horizontal Stress
  • 7.2.4.3 Stress Direction
  • 7.2.5 MODEL VALIDATION AND CALIBRATION
  • 7.3 DRILLING APPLICATIONS FOR UNCONVENTIONAL RESERVOIRS
  • 7.3.1 WELLBORE STABILITY
  • 7.3.1.1 Kick
  • 7.3.1.2 Losses and Breakdown
  • 7.3.1.3 Wellbore Damage
  • 7.3.1.4 Depth of Failure
  • 7.3.2 DEVIATION AND AZIMUTH
  • 7.4 COMPLETION APPLICATIONS FOR UNCONVENTIONAL RESERVOIRS
  • 7.5 CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 8 - HYDRAULIC FRACTURE TREATMENT, OPTIMIZATION, AND PRODUCTION MODELING
  • 8.1 INTRODUCTION
  • 8.2 FRACTURE FLUID AND PROPPANT SELECTIONS
  • 8.2.1 FLUID SELECTION
  • 8.2.2 PROPPANT SELECTION
  • 8.3 OPTIMIZING FRACTURE DESIGN AND COMPLETION STRATEGIES
  • 8.3.1 BUILDING A CALIBRATED MECHANICAL EARTH MODEL
  • 8.3.2 SELECTING THE ADEQUATE FRACTURE MODEL
  • 8.3.3 ESTIMATING FRACTURE PROPERTIES
  • 8.4 PRODUCTION MODELING
  • 8.4.1 ANALYTICAL VERSUS NUMERICAL MODELS
  • 8.4.2 CONSOLIDATING A PREDICTIVE MODEL
  • 8.4.3 MANAGING UNCERTAINTY
  • 8.4.4 MODEL APPLICATIONS
  • 8.5 ECONOMIC AND OPERATIONAL CONSIDERATIONS
  • 8.5.1 OPERATIONAL AND LOGISTIC ANALYSES
  • 8.6 CONCLUSION AND DISCUSSIONS
  • NOMENCLATURE
  • REFERENCES
  • 9 - THE APPLICATION OF MICROSEISMIC MONITORING IN UNCONVENTIONAL RESERVOIRS
  • 9.1 INTRODUCTION
  • 9.2 MICROSEISMIC MONITORING BASICS
  • 9.2.1 CONCEPTS AND BACKGROUND
  • 9.2.1.1 What Is Microseismicity?
  • 9.2.1.2 Microseismic Applications
  • 9.2.2 MICROSEISMIC MONITORING AND PROCESSING
  • 9.2.3 IMPORTANT PARAMETERS
  • 9.2.3.1 Velocity
  • 9.2.3.2 Moment Magnitude
  • 9.2.3.3 Signal to Noise Ratio (SNR)
  • 9.2.3.4 b-Value
  • 9.2.3.5 D-Value
  • 9.2.3.6 S/P Ratio
  • 9.2.3.7 Focal Mechanisms
  • 9.3 MICROSEISMIC APPLICATION TO UNCONVENTIONAL RESOURCE DEVELOPMENT
  • 9.3.1 MICROSEISMIC EVENT PARAMETERS
  • 9.3.2 APPLICATIONS AND CASE STUDIES
  • 9.3.2.1 Fracture Azimuth
  • 9.3.2.2 Natural Fractures
  • 9.3.2.3 Real Time Processing and Analysis
  • 9.3.2.4 Fracture Encounter
  • 9.3.2.5 Refracturing and Diversion
  • 9.3.2.6 Isolation and Overlapping
  • 9.3.2.7 Different Fracture Fluid
  • 9.3.2.8 Different Completions
  • 9.3.2.9 In-Treatment Well Monitoring
  • 9.3.2.10 Permanent Monitoring
  • 9.3.2.11 Geomechanics
  • 9.3.2.12 Source Mechanism
  • 9.3.3 STATISTICAL ANALYSIS
  • 9.3.3.1 Moment Magnitude Versus Distance
  • 9.3.3.2 Depth Contribution
  • 9.3.3.3 Fracture Complexity
  • 9.3.3.4 Fracture Length and Well Spacing
  • 9.3.3.5 S/P Ratio
  • 9.3.3.6 b-Value and D-Value
  • 9.4 CONCLUSIONS
  • APPENDIX
  • A.1 MICROSEISMIC TECHNOLOGY DEVELOPMENT HISTORY
  • A.2 MICROSEISMIC PROCESSING METHODS
  • A.3 TOOL DEPLOYMENT
  • A.3.1 Downhole Monitoring
  • Offset Well Monitoring
  • In-Treatment Well Monitoring
  • Permanent Monitoring
  • A.3.2 Surface Monitoring
  • A.3.3 Combination of Downhole and Surface Monitoring
  • A.4 SOURCE MECHANISM
  • Acknowledgments
  • REFERENCES
  • 10 - IMPACT OF PREEXISTING NATURAL FRACTURES ON HYDRAULIC FRACTURE SIMULATION
  • 10.1 INTRODUCTION
  • 10.2 HYDRAULIC FRACTURE AND NATURAL FRACTURE INTERACTION
  • 10.3 MODELING OF COMPLEX FRACTURE NETWORK
  • 10.4 IMPACT OF NATURAL FRACTURES ON INDUCED FRACTURE NETWORK
  • 10.4.1 IMPACT OF NF FRICTION COEFFICIENT AND FLUID VISCOSITY
  • 10.4.2 IMPACT OF DFN ORIENTATION
  • 10.4.3 IMPACT OF DFN LENGTH
  • 10.4.4 IMPACT OF DFN SPACING
  • 10.4.5 IMPACT OF MULTIPLE SETS OF NATURAL FRACTURES
  • 10.5 IMPACT OF UNCERTAINTY OF DFN ON HFN SIMULATION
  • 10.5.1 STOCHASTIC GENERATION OF THE NATURAL FRACTURE NETWORK
  • 10.5.2 BASE CASE
  • 10.5.3 NATURAL FRACTURE LENGTH
  • 10.5.4 NATURAL FRACTURE SPACING
  • 10.5.5 NATURAL FRACTURE ANGLE
  • 10.6 CONCLUSION
  • REFERENCES
  • PART 2 - SPECIAL TOPICS
  • 11 - EFFECTIVE CORE SAMPLING FOR IMPROVED CALIBRATION OF LOGS AND SEISMIC DATA
  • 11.1 INTRODUCTION
  • 11.2 PATTERN RECOGNITION IN LOG DATA
  • 11.3 SAMPLE SELECTION FOR CALIBRATION
  • 11.4 CASE STUDIES
  • 11.4.1 STUDY 1 WITH TWO EXAMPLES
  • 11.4.2 STUDY 2
  • 11.4.3 STUDY 3
  • 11.5 DISCUSSION
  • 11.6 CONCLUSIONS
  • REFERENCES
  • 11 . APPENDICES
  • APPENDIX 1: PITFALLS IN USING LINEAR REGRESSION
  • APPENDIX 2: CENTRAL LIMIT THEOREM (CLT)
  • 12 - INTEGRATED HYDRAULIC FRACTURE DESIGN AND WELL PERFORMANCE ANALYSIS
  • 12.1 OVERVIEW OF HYDRAULIC FRACTURE PROPAGATION AND MODELING
  • 12.1.1 LINEAR ELASTIC FRACTURE MECHANICS
  • 12.1.2 CLASSICAL FRACTURE PROPAGATION MODELS
  • 12.1.3 PUMP SCHEDULE DESIGN
  • 12.1.4 FRACTURE DIAGNOSIS AND FRACTURE GEOMETRY CONSTRAINTS
  • 12.1.4.1 Nolte-Smith Analysis
  • 12.1.4.2 Step Rate Tests
  • 12.1.4.3 Minifracs
  • 12.1.4.4 Microseismic
  • 12.2 WELL PERFORMANCE ANALYSIS
  • 12.2.1 SOME MECHANISMS AFFECTING WELL PERFORMANCE
  • 12.2.1.1 Pressure-Dependent Permeability
  • 12.2.1.2 Pressure-Dependent Fracture Conductivity
  • 12.2.1.3 Fracture Complexity
  • 12.2.1.4 Comparison of Affecting Mechanisms
  • 12.2.2 TRANSIENT LINEAR FLOW IN STRATIFIED RESERVOIRS
  • 12.2.2.1 Transient Permeability Average
  • 12.2.3 UNCERTAINTY ANALYSIS DURING TRANSIENT LINEAR FLOW
  • 12.3 INTEGRATED HYDRAULIC FRACTURE DESIGN WORKFLOW
  • 12.3.1 HYDRAULIC FRACTURE DESIGN OPTIMIZATION
  • 12.3.2 REFRACTURE OPTIMIZATION
  • 12.3.2.1 Candidate Selection
  • Preliminary Diagnostics
  • Advanced Diagnostics
  • Formation Evaluation
  • Hydraulic Fracture Modeling
  • Performance Analysis
  • Refrac Candidates
  • 12.3.2.2 Refrac Design
  • 12.3.2.3 Refrac Execution
  • 12.3.2.4 Evaluation and Calibration
  • 12.4 CONCLUSION
  • NOMENCLATURE
  • REFERENCES
  • 12 . APPENDIX
  • A.1 PKN-TYPE FRACTURE GEOMETRY
  • A.2 KGD-TYPE FRACTURE GEOMETRY
  • A.3 UNIFIED FRACTURE DESIGN
  • 13 - IMPACT OF GEOMECHANICAL PROPERTIES ON COMPLETION IN DEVELOPING TIGHT RESERVOIRS
  • 13.1 INTRODUCTION
  • 13.1.1 OVERPRESSURE SYSTEM
  • 13.1.2 BAKKEN PORE PRESSURE EXAMPLE
  • 13.1.3 SCOPE OF STUDY
  • 13.1.4 DATA
  • 13.2 OVERVIEW OF HYDRAULIC FRACTURE AND PRODUCTION MODELING
  • 13.3 IMPACT OF GEOMECHANICAL PROPERTIES ON WELL COMPLETIONS
  • 13.4 IMPACT OF GEOMECHANICAL PROPERTIES ON ASSET DEVELOPMENT
  • 13.5 DISCUSSION: GEOMECHANICAL PROPERTIES, RESERVOIR QUALITY, AND COMPLETION STRATEGY
  • 13.6 CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 14 - TIGHT GAS SANDSTONE RESERVOIRS, PART 1: OVERVIEW AND LITHOFACIES
  • 14.1 INTRODUCTION AND OVERVIEW
  • 14.1.1 BACKGROUND
  • 14.1.2 BASIN-CENTERED EXTENSIVE DEPOSITS OR CONVENTIONAL TRAPS
  • 14.1.3 GENERAL PROPERTIES OF TIGHT GAS SANDSTONE RESERVOIRS
  • 14.1.3.1 Source rock
  • 14.1.3.2 Abnormal Pressures
  • 14.1.3.3 Stacking Patterns
  • 14.1.3.4 Reservoir Quality
  • 14.1.4 DRILLING, COMPLETION, AND DEVELOPMENT SCENARIOS
  • 14.2 LITHOFACIES AND ROCK TYPING
  • 14.2.1 LITHOFACIES IN TIGHT GAS SANDSTONES AND WIRELINE LOGS
  • 14.2.2 LITHOFACIES CLASSIFICATION USING WIRELINE LOGS IN TIGHT GAS SANDSTONE FORMATIONS
  • 14.2.2.1 Problem of Cutoff Methods
  • 14.2.2.2 Lithofacies Classification from Mixture Decomposition of Wireline Logs
  • 14.2.2.3 Determining Proportions of Lithofacies in Classification
  • 14.2.3 IMPACT OF LITHOFACIES CLASSIFICATION ON STACKING PATTERNS AND DEPOSITIONAL INTERPRETATION
  • 14.3 THREE-DIMENSIONAL MODELING OF LITHOFACIES IN TIGHT SANDSTONE FORMATIONS
  • 14.4 CONCLUSION
  • Acknowledgment
  • REFERENCES
  • 14 . APPENDIX: METHODS FOR 3D LITHOFACIES MODELING
  • A1 INDICATOR KRIGING AND SEQUENTIAL INDICATOR SIMULATION (SIS)
  • A1.1 Indicator Variogram
  • A1.2 Sequential Indicator Simulation (SIS)
  • A2 OBJECT-BASED MODELING
  • A3 TRUNCATED GAUSSIAN SIMULATION
  • 15 - TIGHT GAS SANDSTONE RESERVOIRS, PART 2: PETROPHYSICAL ANALYSIS AND RESERVOIR MODELING
  • 15.1 INTRODUCTION
  • 15.2 COMMON ISSUES IN PETROPHYSICAL ANALYSIS OF TIGHT GAS SANDSTONES
  • 15.3 PETROPHYSICAL ANALYSIS FOR RESERVOIR PROPERTIES
  • 15.3.1 POROSITY
  • 15.3.2 FLUID SATURATIONS
  • 15.3.3 PERMEABILITY
  • 15.3.4 DISCUSSION ON PETROPHYSICAL INTERPRETATIONS
  • 15.4 THREE-DIMENSIONAL MODELING OF RESERVOIR PROPERTIES
  • 15.4.1 CONSTRUCTING STATIC MODELS
  • 15.4.1.1 Modeling Porosity
  • 15.4.1.2 Modeling Water Saturation and Permeability
  • 15.4.2 DYNAMIC MODELING
  • 15.5 CONCLUSION
  • Acknowledgment
  • REFERENCES
  • 16 - GRANITE WASH TIGHT GAS RESERVOIR
  • 16.1 INTRODUCTION
  • 16.2 BASIN EVOLUTION
  • 16.3 SOURCE ROCK EVALUATION
  • 16.4 TRAP AND SEAL
  • 16.5 STRATIGRAPHY AND DEPOSITIONAL FACIES
  • 16.6 RESERVOIR ARCHITECTURE AND PROPERTIES
  • 16.7 RESOURCES AND FLUID PROPERTIES
  • 16.8 PRODUCTION HISTORY
  • 16.9 HORIZONTAL WELLS
  • 16.10 HYDRAULIC FRACTURING
  • 16.11 MULTILATERAL WELL
  • 16.12 CONCLUSIONS
  • Acknowledgment
  • REFERENCES
  • 17 - COALBED METHANE EVALUATION AND DEVELOPMENT: AN EXAMPLE FROM QINSHUI BASIN IN CHINA
  • 17.1 INTRODUCTION AND OVERVIEW
  • 17.1.1 OVERVIEW
  • 17.1.2 BACKGROUND FOR CBM IN THE QINSHUI BASIN
  • 17.2 BASIN EVOLUTION AND GAS GENERATION
  • 17.3 CBM RESERVOIR CHARACTERIZATION
  • 17.3.1 THICKNESS AND GAS CONTENT
  • 17.3.2 PERMEABILITY
  • 17.3.3 GAS SATURATION
  • 17.3.4 SORPTION TIME
  • 17.4 CBM DEVELOPMENT CHALLENGES
  • 17.4.1 WELL COMPLETION
  • 17.4.2 SITE/INTERVAL SELECTION
  • 17.4.3 PERMEABILITY ENHANCEMENT OPERATIONS
  • 17.4.4 DEWATERING SCHEDULE
  • 17.5 CONCLUSION
  • REFERENCES
  • 18 - MONITORING AND PREDICTING STEAM CHAMBER DEVELOPMENT IN A BITUMEN FIELD
  • 18.1 INTRODUCTION
  • 18.1.1 GENERAL
  • 18.1.2 THE ATHABASCA FIELD
  • 18.1.3 SEISMIC AND WELL DATA
  • 18.2 MAPPING STEAM
  • 18.3 RESERVOIR CHARACTERIZATION USING A PROBABILISTIC NEURAL NETWORK
  • 18.4 CONCLUSION
  • LIST OF ABBREVIATIONS
  • REFERENCES
  • 19 - GLOSSARY FOR UNCONVENTIONAL OIL AND GAS RESOURCE EVALUATION AND DEVELOPMENT
  • 19.1 RESERVOIR-RELATED TERMINOLOGY
  • UNCONVENTIONAL RESOURCES
  • SHALE
  • KEROGEN
  • SOURCE ROCK
  • TOTAL ORGANIC CARBON
  • ADSORPTION
  • VITRINITE REFLECTANCE
  • THERMAL MATURATION AND MATURITY
  • DIAGENESIS, CATAGENESIS, AND METAGENESIS
  • PYROLYSIS
  • HETEROGENEITY
  • RESERVOIR QUALITY
  • 19.2 ROCK MECHANICS-RELATED TERMINOLOGY
  • COMPLETION QUALITY
  • BRITTLENESS INDEX
  • STRESS
  • OVERBURDEN STRESS, MAXIMUM, AND MINIMUM HORIZONTAL STRESSES
  • IN SITU STRESS
  • STRAIN
  • POISSON'S RATIO
  • YOUNG'S MODULUS
  • TENSILE STRENGTH
  • PORE PRESSURE
  • 19.3 DRILLING AND COMPLETION-RELATED TERMINOLOGY
  • COMPLETION
  • STIMULATION
  • CASING AND CEMENTING
  • ANNULUS
  • HYDRAULIC FRACTURING
  • FRACTURE HALF-LENGTH
  • FRACTURE HEIGHT AND WIDTH
  • FRACTURE ORIENTATION
  • FRACTURING FLUID
  • ADDITIVES
  • BREAKERS
  • PROPPANT
  • SLICKWATER, WATER FRAC
  • LINEAR GELS OR LINEAR POLYMER GELS
  • CROSS-LINKED GELS OR CROSS-LINKED POLYMER GELS
  • FOAMED FLUIDS
  • VISCOELASTIC SURFACTANT GELS
  • OIL-BASED FLUIDS
  • FRACTURE CONDUCTIVITY
  • PAD
  • PREPAD
  • SLURRY
  • BLENDER
  • FLUSH
  • FRACTURE CLOSURE PRESSURE
  • NET PRESSURE
  • PERFORATION
  • 19.4 MISCELLANEOUS TERMINOLOGY
  • PROBABILITY DENSITY FUNCTION
  • CUMULATIVE PROBABILITY DENSITY FUNCTION
  • EXPECTED VALUE
  • EXPECTED MONETARY VALUE OR EMV
  • RISK
  • OPTIMIZATION
  • VALUE OF INFORMATION
  • SUPPORT EFFECT OR SCALE EFFECT
  • VARIOGRAM
  • KRIGING
  • MONTE CARLO SAMPLING OR SIMULATION
  • STOCHASTIC SIMULATION AND SEQUENTIAL GAUSSIAN SIMULATION
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok