Nano- and Microfabrication for Industrial and Biomedical Applications

 
 
William Andrew (Verlag)
  • 2. Auflage
  • |
  • erschienen am 12. Juni 2016
  • |
  • 278 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-323-38928-0 (ISBN)
 

Nano- and Microfabrication for Industrial and Biomedical Applications, Second Edition, focuses on the industrial perspective on micro- and nanofabrication methods, including large-scale manufacturing, the transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost.

The book gives a history of miniaturization and micro- and nanofabrication, and surveys industrial fields of application, illustrating fabrication processes of relevant micro and nano devices. In this second edition, a new focus area is nanoengineering as an important driver for the rise of novel applications by integrating bio-nanofabrication into microsystems. In addition, new material covers lithographic mould fabrication for soft-lithography, nanolithography techniques, corner lithography, advances in nanosensing, and the developing field of advanced functional materials.

Luttge also explores the view that micro- and nanofabrication will be the key driver for a 'tech-revolution' in biology and medical research that includes a new case study that covers the developing organ-on-chip concept.


  • Presents an interdisciplinary approach that makes micro/nanofabrication accessible equally to engineers and those with a life science background, both in academic settings and commercial R&D
  • Provides readers with guidelines for assessing the commercial potential of any new technology based on micro/nanofabrication, thus reducing the investment risk
  • Updated edition presents nanoengineering as an important driver for the rise of novel applications by integrating bio-nanofabrication into microsystems


Luttge studied Applied Sciences in Germany (1989-1993). She had been working as an engineering researcher at Institut für Mikrotechnik in Mainz, Germany, for nearly 5 years prior to starting her PhD studies in Microsystems Technologies at Imperial College in 1999, London, UK. In 2003, Luttge was awarded a PhD from University of London on the development of fabrication technology for micro-optical scanners. Switching her research interest to microfluidics applications, Luttge had been working for 12 years at University of Twente's MESA+ Institute for Nanotechnology, The Netherlands, first as a senior scientist and since 2007 as an assistant professor prior to joining TU/e. Based on her established scientific profile in Nanoengineering for Medicine and Biology, Luttge has been appointed associate professor in the Microsystems Group at the Department of Mechanical Engineering in June 2013.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 43,47 MB
978-0-323-38928-0 (9780323389280)
0323389287 (0323389287)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nano- and Microfabrication for Industrial and Biomedical Applications
  • Copyright
  • Contents
  • Preface
  • Preface to First Edition
  • Author Biography
  • Chapter 1: Introduction
  • 1.1 Philosophy of Micro/Nanofabrication
  • 1.2 The Industry-Science Dualism
  • 1.3 Industrial Applications
  • 1.4 Purpose and Organization of This Book
  • References
  • Chapter 2: Basic technologies for microsystems
  • 2.1 Photolithography
  • 2.2 Thin Films
  • 2.2.1 Wet Deposition Techniques
  • 2.2.2 Vapor Deposition Techniques
  • 2.3 Silicon Micromachining
  • 2.3.1 Etching
  • Wet chemical etching
  • Dry etching
  • 2.3.2 Surface Micromachining
  • 2.3.3 Silicon Bulk Micromachining
  • Anisotropic wet chemical etching
  • Bosch process
  • 2.4 Industrially Established Nonsilicon Processing
  • 2.4.1 Quartz Etching
  • 2.4.2 Glass Wet Etching
  • 2.4.3 Photostructurable Glass
  • 2.4.4 Powder Blasting
  • 2.4.5 Plastic Microfabrication
  • Thick resist lithography
  • Laser ablation
  • Photopolymerization
  • Thermoplastic micromolding
  • 2.5 Soft-Lithography
  • 2.5.1 Principle of Soft-Lithography
  • 2.5.2 Types of Soft-Lithography
  • Replica molding
  • Microcontact printing
  • Microtransfer molding
  • Micromolding in capillaries
  • Solvent-assisted micromolding
  • 2.6 Nanolithography
  • 2.6.1 Why Do We Need the Term Nanolithography?
  • 2.6.2 Primary Nanolithography Techniques
  • Deep ultra violet nanolithography
  • Two-photon stereolithography
  • 2.6.3 Secondary Nanolithography
  • Thermal nanoimprinting
  • Step-and-flash nanolithography
  • 2.6.4 Miscellaneous Nanolithographic Techniques Commonly Practiced
  • Nanosphere lithography
  • Block-copolymer lithography
  • 2.7 Conclusions
  • References
  • Chapter 3: Advanced microfabrication methods
  • 3.1 LIGA
  • 3.2 Deep Reactive Ion Etching
  • 3.3 Microceramic Processing
  • 3.3.1 Micromolding
  • 3.3.2 Ceramic Microparts by LIGA
  • 3.3.3 Utilizing Capillaries for Ceramic Micromolding
  • 3.3.4 Utilizing Soft-Mold Replication
  • 3.3.5 Ceramic Patterning on Curved Substrates
  • 3.3.6 Patterning Ceramic Materials at Nanoscale Resolution
  • 3.4 Speciality Substrates and Their Applications
  • 3.4.1 Silicon-on-Insulator (SOI)
  • 3.4.2 Electro-Optic Substrates
  • 3.4.3 III/V Semiconductor Substrates
  • 3.5 Advanced Non-Silicon and Silicon Hybrid Devices
  • 3.5.1 Nanofabrication of Information Storage Devices
  • 3.5.2 Integrated Optics
  • 3.6 Planar Lightwave Circuits
  • 3.7 Fabrication Example of an Integrated Optical Device
  • 3.8 Integrated Optics in the MST Foundry Service Industry: A Case Study
  • 3.9 Biohybrid Devices: A New Trend
  • 3.10 Conclusions
  • References
  • Chapter 4: Nanotechnology
  • 4.1 Top-Down, Bottom-Up
  • 4.1.1 Lithographic Techniques in Nanotechnology
  • 4.1.2 Lithography for Nanoarrays
  • 4.1.3 Top-Down Nanolithographic Principles
  • 4.1.4 Nanolithographic Technologies for the Microelectronics Industry
  • EUV lithography
  • 4.1.5 Nanoimprint Technology
  • 4.1.6 Case Studies: Nanoimprint Applications
  • Patterned magnetic media
  • Random access memory
  • Surface-acoustic-wave (SAW) devices
  • 4.1.7 Emerging Nanolithographic Technologies
  • Self-assembly nanotechnology using templates
  • Multiple e-beam/ion-beam lithography
  • DUV interference nanolithography
  • EUV interference nanolithography
  • Atom lithography
  • 4.1.8 LIL Development at NanoLab NL
  • Multi-exposures and novel resist systems for 266 nm-LIL
  • Method/materials
  • Results
  • 4.1.9 LIL Nanoarrays for Cell Biology
  • 4.1.10 Concluding Remarks on Emerging Nanolithography
  • 4.2 Nanomaterials
  • 4.2.1 Ordered Oxides
  • 4.2.2 Oxide Nanoarrays: Definitions and Background
  • Natural versus artificial oxide nanoarrays
  • Oxide metamaterials: how do they differ from nanoarrays?
  • Curiosity-driven research on nanoscale metamaterials
  • Application-driven research on nanoscale oxide metamaterials
  • 4.2.3 Principles of Oxide Nanoarray Fabrication
  • Lithographic-assisted oxide nanoarrays
  • Bio-inspired and biotemplated oxide nanoarrays
  • 4.2.4 Ordered Oxides in Medical Applications
  • Novel nanoarrays in diagnostics
  • Perspectives on nanoarray in therapy
  • 4.2.5 Advanced Functional Materials
  • What are advanced functional materials?
  • 4.3 Where Are We?
  • 4.4 Where to Go From Here?
  • References
  • Chapter 5: Micromechanical transducers
  • 5.1 Application Fields
  • 5.2 Overview of Materials
  • 5.2.1 Single Crystals
  • 5.2.2 Amorphous Materials
  • 5.3 Thick and Thin Film Hybrid Materials
  • 5.4 Microactuation
  • 5.5 Packaged Sensors
  • 5.5.1 From Die to Device Level
  • 5.5.2 From Device Level to System
  • 5.6 Silicon as a Mechanical Material in Resonant Microdevices
  • 5.6.1 Resonant Sensors
  • 5.6.2 Diaphragms as Micromechanical Couplers
  • 5.7 Information Society
  • 5.7.1 Micro-Opto-Electromechanical Systems
  • 5.8 Conclusions
  • References
  • Chapter 6: Chemical and biological sensors at component and device level
  • 6.1 Application Field
  • 6.2 Sensor Principles for the Collection of (Bio) Chemical Information
  • 6.2.1 Optical Techniques
  • 6.2.2 Electrochemical Techniques
  • Conductometry
  • Amperometry
  • 6.2.3 Methodology of Sensor Development
  • 6.3 Integrated chemFET Device: Case Study of a Semiconductor-Based pH Sensor Development
  • 6.4 Integrated Clinical Diagnostics: A Medical Application for Electrochemical Sensor Arrays
  • 6.4.1 From Microarray to Biochip Technology
  • 6.4.2 Cell-Based Biosensor
  • 6.5 Conclusions
  • References
  • Chapter 7: Microfluidic components, devices and integrated lab-on-a-chip systems
  • 7.1 Application Fields
  • 7.2 Microfluidic Components
  • 7.2.1 Passive Microvalves
  • 7.2.2 Active Microvalves
  • Valving by micromechanical actuation
  • 7.3 Controlled Transport by Diffusion
  • 7.4 Integration for Microfluidic Transport, Sensing and Dispensing
  • 7.5 Lab-on-a-Chip
  • 7.5.1 Miniaturized Particle and Cell Sorting Devices
  • 7.5.2 Cell Cultures and Fermentation Processes on Chip
  • 7.6 Device-to-World Connections: The MATAS Concept
  • 7.7 From the Lab Bench to Industry: Microchip Capillary Electrophoresis
  • 7.7.1 Is There a Need for a Microfluidic-Integrated System at the Doctor's Surgery?
  • 7.7.2 The Technology Behind the Lithium Case
  • 7.7.3 Microchip Capillary Electrophoresis Instrumentation
  • 7.7.4 Sample to Chip Interface
  • 7.7.5 Samples
  • 7.7.6 Results and Conclusions from the LICETAS Project
  • 7.8 Organ-on-Chip: A Paradigm Shift in Medical and Pharmaceutical Sciences
  • 7.8.1 Lung-on-Chip
  • 7.8.2 Brain-on-Chip
  • 7.9 Conclusions
  • References
  • Chapter 8: Microfabrication for novel products in drug delivery: An example
  • 8.1 Microneedle Research at University of Twente and Its Spin-Off
  • 8.1.1 Desk Research: MNAs, Microfabrication and Transdermal Delivery of Insulin
  • 8.1.2 Is There a Need for Microneedles?
  • 8.1.3 Microneedles by Microfabrication Technologies
  • Research status
  • Fabrication and design concepts
  • Materials
  • Ceramic nanoporous microneedles
  • Summarizing the technology requirements from a commercialization point of view
  • 8.1.4 Are Microneedles Ready for Insulin Delivery?
  • 8.1.5 Design Aspects for Microneedle Insulin Delivery
  • Fabrication attributes and their clinical relevance
  • Clinical perspective
  • 8.2 MNA-4-Insulin: A Brief Evaluation
  • 8.3 Conclusions
  • References
  • Chapter 9: Reflective comments and conclusions
  • 9.1 Environmental Aspects
  • 9.2 Health Aspects of µ NP
  • 9.3 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok