Handbook of Biofuels Production

 
 
Woodhead Publishing
  • 2. Auflage
  • |
  • erschienen am 19. Mai 2016
  • |
  • 770 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100456-2 (ISBN)
 

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage.

Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology.

Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines.

The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives.

  • Provides systematic and detailed coverage of the processes and technologies being used for biofuel production
  • Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage
  • Reviews the production of both first and second generation biofuels
  • Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks
  • Englisch
  • Cambridge
  • |
  • Großbritannien
Elsevier Science
  • 13,84 MB
978-0-08-100456-2 (9780081004562)
0081004567 (0081004567)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Handbook of Biofuels Production
  • Related titles
  • Handbook of Biofuels Production
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Key issues and assessment of biofuels production
  • 1 - Introduction: an overview of biofuels and production technologies
  • 1.1 Introduction
  • 1.2 Development of (bio)chemical conversion technologies
  • 1.3 Development of biological conversion technologies
  • 1.4 Thermochemical conversion technologies
  • 1.5 Process integration and biorefinery
  • 1.6 Future trends
  • Acknowledgment
  • References
  • 2 - Multiple objectives policies for biofuels production: environmental, socio-economic, and regulatory issues
  • 2.1 Introduction
  • 2.2 Energy security and supply
  • 2.2.1 European Union
  • 2.2.2 Brazil
  • 2.2.3 United States
  • 2.2.4 China
  • 2.3 Emission reductions, land use, and other environmental impacts
  • 2.4 Food safety and development of rural areas
  • 2.5 Biofuels support policies
  • 2.5.1 Climate-change mitigation policies
  • 2.6 Conclusions
  • 2.6.1 Future prospects
  • References
  • 3 - Life cycle sustainability assessment of biofuels
  • 3.1 Introduction
  • 3.2 Main challenges for biofuel sustainability
  • 3.2.1 The necessity for "green biofuels"
  • 3.2.2 Effective sustainability schemes for biofuels
  • 3.2.3 Scientific studies for biofuel sustainability certification
  • 3.3 Life cycle sustainability assessment methodology
  • 3.3.1 Goal and scope definition
  • 3.3.2 Life Cycle Inventory
  • 3.3.3 Life Cycle Impact Assessment (LCIA)
  • 3.3.4 Interpretation
  • 3.4 LCA considerations of biomass to biofuel conversion routes
  • 3.4.1 First-generation biofuels
  • 3.4.2 Second-generation biofuels
  • 3.4.3 Third- and fourth-generation biofuels
  • 3.5 Overview of major findings of selected LCA studies in biofuel production
  • 3.5.1 Selected LCA studies on energy crops
  • 3.5.2 Selected LCA studies on solid biofuels upgrade
  • 3.5.3 Selected LCA studies on biofuel thermochemical pretreatment
  • 3.5.4 Selected LCA studies on the overall impact of biofuel production
  • 3.6 Conclusions
  • References
  • 4 - Biofuels: technology, economics, and policy issues
  • 4.1 Introduction
  • 4.2 Moving from fossil fuel to biofuels: insights from socio-technical transition theory
  • 4.3 Assessing first- and next-generation biofuels
  • 4.3.1 First generation: bioethanol, biodiesel, and other biofuels
  • 4.3.1.1 Bioethanol
  • 4.3.1.2 Biodiesel
  • 4.3.1.3 Other biofuels
  • 4.3.2 Beyond the first-generation biofuels
  • 4.3.3 Integrated biorefineries: making biofuel along with other high-added value products
  • 4.4 Economic, environmental, and social issues
  • 4.4.1 Socioeconomic issues
  • 4.4.2 Socio-environmental issues
  • 4.5 Policy actions and the regulatory framework
  • 4.5.1 The Brazilian incentive and regulatory systems
  • 4.5.2 The US incentive and regulatory systems
  • 4.5.3 The European incentive and regulatory systems
  • 4.6 Conclusions
  • References
  • 5 - Feedstocks and challenges to biofuel development
  • 5.1 Introduction
  • 5.2 Edible vegetable raw materials for biodiesel production
  • 5.2.1 Rapeseed/canola seed
  • 5.2.2 Sunflower seed
  • 5.2.3 Palm tree
  • 5.2.4 Soybean seed
  • 5.2.5 Peanut seed
  • 5.2.6 Cotton seed
  • 5.3 Nonedible/low-cost raw materials for diesel engine biofuel production
  • 5.3.1 Green canola seed
  • 5.3.2 Callophyllum inophyllum L.
  • 5.3.3 Annona
  • 5.3.4 Croton megalocarpus
  • 5.3.5 Azadirachta indica
  • 5.3.6 Waste oils
  • 5.3.7 Other sources of low-cost, renewable oil for biofuel production
  • 5.4 Raw materials for bioethanol production
  • 5.4.1 Most frequent raw materials for bioethanol production
  • 5.4.1.1 Raw materials employed by country
  • 5.4.2 Challenges for sustainable bioethanol production
  • Acknowledgments
  • References
  • Two - Biofuels from chemical and biochemical conversion processes and technologies
  • 6 - Production of biodiesel via catalytic upgrading and refining of sustainable oleagineous feedstocks
  • 6.1 Introduction
  • 6.1.1 Major issues in biodiesel production
  • 6.1.1.1 Oil depletion issues
  • 6.1.1.2 Problems of homogeneously catalyzed biodiesel production
  • 6.2 General background to biodiesel
  • 6.2.1 Biodiesel as an alternative fuel
  • 6.2.2 The biodiesel production process
  • 6.2.2.1 The transesterification reaction
  • 6.2.3 Oil feedstocks for biodiesel production
  • 6.2.3.1 First and second generation biodiesel fuels
  • 6.2.3.2 Nonedible vegetable oils and their lipid composition
  • 6.3 Recent robust technology in biodiesel catalysis
  • 6.3.1 Homogeneous vs. heterogeneous catalysis
  • 6.3.2 Solid base catalysts
  • 6.3.3 Solid acid catalysts
  • 6.3.3.1 Templated mesoporous materials: effect of pore networks and surface functionality
  • 6.3.3.2 Hierarchical macroporous-mesoporous solid acid and base materials
  • 6.4 Concluding remarks
  • Acknowledgments
  • References
  • 7 - Biochemical catalytic production of biodiesel
  • 7.1 Introduction
  • 7.2 Lipases
  • 7.3 Enzymatic production of biodiesel
  • 7.3.1 Extracellular and intracellular lipases
  • 7.3.2 Lipase immobilization
  • 7.3.2.1 Immobilization of lipase by physical adsorption
  • 7.3.2.2 Immobilization of lipase by ionic bonding versus covalent bonding
  • 7.3.2.3 Immobilization of lipase by entrapment or encapsulation
  • 7.3.2.4 Immobilization of lipase by cross-linking
  • 7.3.2.5 Commercialization of immobilized lipase for biodiesel production
  • 7.3.3 Variables affecting the enzymatic transesterification reaction
  • 7.3.3.1 Lipid source
  • 7.3.3.2 Acyl acceptor
  • 7.3.3.3 Temperature
  • 7.3.3.4 Water content
  • 7.3.3.5 Inhibition by alcohol
  • 7.3.3.6 Inhibition by glycerol
  • 7.3.3.7 Pretreatment for improving lipase stability
  • 7.4 New tendencies in enzymatic production of biodiesel
  • 7.4.1 Novel immobilization techniques
  • 7.4.2 Use of lipases from different sources in combination
  • 7.4.3 Ionic liquids as solvent in enzyme-catalyzed transesterification
  • 7.4.4 Enzyme-catalyzed transesterification under supercritical CO2 medium
  • 7.4.5 Statistical approaches for optimization of reaction
  • 7.4.6 Enzyme-catalyzed transesterification for low-cost and high free-fatty-acid feedstocks
  • 7.5 Biofuels similar to biodiesel produced using several acyl acceptors, different to methanol
  • 7.5.1 Biodiesel produced together to glycerol triacetate in the same transesterification process of oils and fats
  • 7.5.2 Biodiesel produced together to fatty acid glycerol carbonate esters in the same transesterification process of oils and fats
  • 7.5.3 Biodiesel produced together to monoacylglycerol in the same transesterification process of oils and fats
  • 7.6 Industrial biodiesel production using enzymes
  • 7.7 Conclusions
  • Acknowledgements
  • References
  • 8 - Production of fuels from microbial oil using oleaginous microorganisms
  • 8.1 Introduction
  • 8.2 Oleaginous yeasts and raw materials used for microbial oil production
  • 8.2.1 Food supply chain wastes
  • 8.2.2 Biodiesel industry by-products
  • 8.2.3 Lignocellulosic resources
  • 8.2.4 Other industrial wastes and by-product streams
  • 8.3 The biochemistry of lipid accumulation in the oleaginous microorganisms
  • 8.3.1 General remarks
  • 8.3.2 Lipid accumulation from fermentation of sugars and related substrates used as the sole carbon source
  • 8.3.3 Lipid production from fermentation of hydrophobic materials used as the sole carbon source
  • 8.4 Microbial oil production in fed-batch cultures
  • 8.5 Biodiesel production from microbial oil
  • 8.5.1 Biodiesel properties
  • 8.5.2 Direct versus indirect transesterification of microbial oil
  • 8.6 Techno-economic evaluation of biodiesel production from microbial oil
  • 8.7 Perspective of biofuel production from microbial oil
  • References
  • 9 - Biochemical production of bioalcohols
  • 9.1 Introduction
  • 9.2 Types of biomass for bioalcohol production
  • 9.2.1 Characteristics of biomass
  • 9.2.2 Availability of biomass
  • 9.2.3 Processing of biomass
  • 9.3 Bioalcohols
  • 9.3.1 Types of bioalcohols
  • 9.3.2 Biomethanol
  • 9.3.3 Bioethanol
  • 9.3.4 Biobutanol
  • 9.3.5 Biopropanol
  • 9.4 New technologies for bioethanol production
  • 9.4.1 Development of new energy crops and alternative feedstocks
  • 9.4.1.1 High fermentable corn (HFC) hybrids
  • 9.4.1.2 Corn with endogenous alpha-amylase
  • 9.4.1.3 Oil-producing sugarcane (lipidcane)
  • 9.4.1.4 Food waste
  • 9.4.2 Technologies to reduce substrate and product inhibition
  • 9.4.2.1 Granular starch hydrolyzing (GSH) enzymes (reducing substrate inhibition)
  • 9.4.2.2 In situ ethanol stripping using vacuum (reducing product inhibition)
  • Acknowledgments
  • References
  • 10 - Production of biogas via anaerobic digestion
  • 10.1 Introduction
  • 10.1.1 The principles of the anaerobic digestion process
  • 10.2 Factors affecting the anaerobic digestion process
  • 10.2.1 Temperature
  • 10.2.2 pH, free ammonia, and volatile fatty acids
  • 10.2.3 Feedstock composition
  • 10.3 Advantages and limitations
  • 10.4 Reactor configurations
  • 10.5 Methods for enhancing the efficiency of anaerobic digestion
  • 10.5.1 Pretreatments
  • 10.5.1.1 Mechanical pretreatments
  • 10.5.1.2 Thermal pretreatments
  • 10.5.1.3 Chemical pretreatments
  • 10.5.1.4 Biological pretreatments
  • 10.5.2 Anaerobic codigestion
  • 10.6 Process modeling
  • 10.7 Process monitoring and control
  • 10.8 Biogas utilization
  • 10.9 Existing biogas installations
  • 10.10 Conclusions and future trends
  • References
  • 11 - Biological and fermentative production of hydrogen
  • 11.1 Introduction
  • 11.1.1 Hydrogen is a suitable alternative sustainable energy
  • 11.1.2 Advantages of biological production of hydrogen over physical/chemical methods
  • 11.2 Fundamentals of biohydrogen production
  • 11.2.1 Why is hydrogen produced?
  • 11.2.2 Enzymes involved
  • 11.3 Biological hydrogen production strategies
  • 11.3.1 Dark fermentation of organic matters
  • 11.3.1.1 Pathway
  • 11.3.1.2 Feedstock and microorganisms
  • 11.3.2 Biophotolysis of water by microalgae and cyanobacteria
  • 11.3.2.1 Direct biophotolysis
  • 11.3.2.2 Indirect biophotolysis
  • 11.3.3 Photofermentation by anoxygenic photosynthetic bacteria
  • 11.3.4 Microbial electrolysis cell
  • 11.3.4.1 Mechanism
  • 11.3.4.2 Device configuration
  • 11.3.4.3 Microorganisms and substrates
  • 11.3.4.4 Hydrogen yield
  • 11.3.4.5 Challenges
  • 11.3.5 Hybrid systems
  • 11.4 Enhancing hydrogen production through metabolic engineering
  • 11.4.1 Engineering strategies for dark fermentation
  • 11.4.2 Engineering strategies for biophotolysis
  • 11.4.3 Engineering strategies for photofermentation
  • 11.5 Hydrogen production by cell-free enzymatic systems
  • 11.6 Comparison of biohydrogen production techniques
  • 11.6.1 Hydrogen production rate
  • 11.6.2 Energy conversion efficiency
  • 11.7 Conclusions and outlook
  • References
  • 12 - Biological and fermentative conversion of syngas
  • 12.1 Introduction
  • 12.2 Fundamentals of syngas fermentation
  • 12.3 Bacteria for syngas conversion
  • 12.4 Effects of process parameters
  • 12.4.1 Influence of media composition
  • 12.4.1.1 Nutrients
  • 12.4.1.2 Reducing agent
  • 12.4.2 Influence of pH value
  • 12.4.3 Influence of temperature
  • 12.4.4 Influence of trace metals
  • 12.4.5 Influence of syngas composition
  • 12.4.6 Influence of mass transfer
  • 12.4.6.1 Bioreactor design
  • 12.4.6.2 Additives
  • 12.5 Reactors for fermentative conversion of syngas
  • 12.5.1 Continuous stirred-tank reactor
  • 12.5.2 Bubble column reactors
  • 12.5.3 Trickle-bed reactor
  • 12.5.4 Membrane-based system
  • 12.6 Product recovery
  • 12.6.1 Liquid-liquid extraction
  • 12.6.2 Pertraction
  • 12.6.3 Adsorption
  • 12.6.4 Pervaporation
  • 12.6.5 Gas stripping
  • 12.7 Examples of commercial and semicommercial processes
  • 12.8 Conclusions for biological fermentation of syngas
  • References
  • 13 - Chemical routes for the conversion of cellulosic platform molecules into high-energy-density biofuels
  • 13.1 Introduction
  • 13.2 Oxygenated fuels via 5-HMF: furanic compounds
  • 13.2.1 2,5-Dimethylfuran
  • 13.2.2 Ethers of 5-HMF: ethoxymethyfurfural
  • 13.2.3 Ester of 5-HMF: acetoxymethyfurfural
  • 13.3 Levulinic acid as platform molecule to oxygenated fuels: alkyl levulinates and valeric biofuels
  • 13.3.1 Esterification: alkyl levulinates
  • 13.3.2 ?-Valerolactone and valeric biofuels
  • 13.4 Oxygenated fuels via furfural: furan derivatives
  • 13.4.1 Furfural hydrogenation toward oxygenated biofuels
  • 13.4.2 Esters and ethers from furfuryl alcohol
  • 13.4.3 ?-Valerolactone from furfural
  • 13.5 Blending effect of oxygenated biofuels with conventional fuels
  • 13.6 Catalytic conversion of ?-valerolactone to liquid hydrocarbon fuels
  • 13.7 Furan derivatives as platform molecules for liquid hydrocarbon fuels
  • 13.7.1 5-HMF upgrading via CC coupling reactions
  • 13.7.2 Furfural upgrading via CC coupling reactions
  • 13.8 Sugars to hydrocarbon fuels: aqueous phase reforming process
  • 13.9 Final remarks and future outlook
  • Acknowledgments
  • References
  • Three - Biofuels from thermal and thermo-chemical conversion processes and technologies
  • 14 - Catalytic fast pyrolysis for improved liquid quality
  • 14.1 Introduction
  • 14.2 Pyrolysis background
  • 14.2.1 Pyrolysis
  • 14.2.2 Fast pyrolysis
  • 14.2.3 Distribution of fast pyrolysis products from certain biomass components
  • 14.2.4 Fast pyrolysis products
  • 14.2.4.1 Liquid bio-oil
  • 14.2.4.2 Solid char
  • 14.2.4.3 Gases
  • 14.3 Catalytic pyrolysis
  • 14.3.1 Catalytic upgrading
  • 14.3.2 Catalytic pyrolysis: improved pyrolysis oil generation or production of higher-value chemicals
  • 14.3.3 Deoxygenation
  • 14.3.4 Dehydration
  • 14.3.5 Decarboxylation
  • 14.3.6 Decarbonylation
  • 14.4 Catalytic pyrolysis: catalysts used
  • 14.4.1 Activated alumina catalysts
  • 14.4.2 Zeolite catalysts
  • 14.4.3 Mesoporous catalysts
  • 14.4.4 Fluid catalytic cracking catalysts
  • 14.4.5 Transition metal catalysts
  • 14.4.6 Carbonate-derived catalysts
  • 14.4.7 Catalyst deactivation
  • 14.5 Catalytic pyrolysis: reactor setup
  • 14.5.1 In situ and ex situ processing in catalytic fast pyrolysis
  • 14.5.2 Process parameters
  • 14.5.2.1 Temperature
  • 14.5.2.2 Residence time and heating rate
  • 14.5.2.3 Catalyst to biomass ratio
  • 14.5.2.4 Vapor residence time
  • 14.6 Conclusion and future opportunities
  • Acknowledgments
  • References
  • 15 - Production of bio-syngas and bio-hydrogen via gasification
  • 15.1 Introduction
  • 15.1.1 Hydrogen and syngas
  • 15.1.2 Production routes
  • 15.1.3 A brief piece of history
  • 15.2 Biomass feedstock for gasification
  • 15.2.1 Biomass properties as gasification fuel
  • 15.2.2 Typical biomass feedstock for gasification
  • 15.2.2.1 Wood and woody biomass
  • 15.2.2.2 Herbaceous and agricultural biomass
  • 15.2.2.3 Wastes
  • 15.2.3 Improved biomass feedstock for gasification
  • 15.3 Biomass gasification process
  • 15.3.1 Reactions and thermodynamics of biomass gasification
  • 15.3.2 Kinetics of biomass gasification
  • 15.3.3 Influence of operating conditions on biomass gasification
  • 15.3.3.1 Heating rate and residence time
  • 15.3.3.2 Gasifying agent, equivalence ratio, and steam/biomass ratio
  • 15.3.3.3 Pressure
  • 15.3.3.4 Temperature
  • 15.3.3.5 Ash content and composition
  • 15.3.4 Process variations and strategies to maximize gas products
  • 15.3.4.1 Hydrothermal gasification
  • 15.3.4.2 Catalytic gasification
  • 15.3.4.3 Plasma gasification
  • 15.3.4.4 Microwave-assisted gasification
  • 15.3.4.5 Hydrogen production by reaction integrated novel gasification (HyPr-RING) strategy
  • 15.4 Gasification technology
  • 15.4.1 Fixed bed or moving bed gasifiers
  • 15.4.1.1 Downdraft gasifier
  • 15.4.1.2 Updraft gasifier
  • 15.4.1.3 Crossdraft gasifier
  • 15.4.2 Fluidized bed gasifiers
  • 15.4.2.1 Bubbling fluidized bed (BFB) gasifier
  • 15.4.2.2 Circulating fluidized bed (CFB) gasifier
  • 15.4.3 Entrained flow gasifiers
  • 15.4.4 New developments in gasification technology
  • 15.4.4.1 Indirect gasifiers
  • 15.4.4.2 Plasma gasifiers
  • 15.4.4.3 Other gasifier designs
  • 15.5 Syngas technology: composition, conditioning and upgrading to valuable products
  • 15.5.1 Main contaminants
  • 15.5.1.1 Sulfur
  • 15.5.1.2 Ammonia
  • 15.5.1.3 Chlorine
  • 15.5.1.4 Tars
  • 15.5.1.5 Ashes
  • 15.5.2 Cleaning technologies
  • 15.5.2.1 Tars
  • 15.5.2.2 Sulfur
  • 15.5.2.3 HCl
  • 15.5.2.4 Ammonia
  • 15.5.2.5 Ashes
  • 15.5.3 Upgrading technologies: from syngas to hydrogen, biofuels, and high-value chemicals
  • 15.5.3.1 Production of H2
  • Water gas shift reaction
  • Sponge iron
  • Separation
  • 15.5.3.2 Ammonia
  • 15.5.3.3 Methanol production
  • 15.5.3.4 Production of liquid fuels: Fischer-Tropsch
  • 15.5.3.5 Production of synthetic natural gas: methanation
  • 15.5.3.6 Production of iso-C4: isosynthesis
  • 15.5.3.7 Production of alcohols and aldehydes: oxosynthesis
  • 15.5.3.8 Syngas fermentation
  • 15.6 Current status in commercial gasification of biomass
  • 15.7 Challenges and opportunities
  • References
  • 16 - Production of bioalcohols via gasification
  • 16.1 Introduction
  • 16.2 Gasification routes for alcohol production
  • 16.2.1 Methanol production
  • 16.2.2 Ethanol production
  • 16.3 Technical and economical analysis of the oxidative coupling of methane process
  • 16.3.1 Introduction
  • 16.3.2 Technical analysis
  • 16.3.3 Economical analysis
  • 16.3.4 Conclusions: oxidative coupling of methane process analysis
  • 16.4 Conclusions and future perspectives
  • Acknowledgments
  • References
  • 17 - Production of biofuels via hydrothermal conversion
  • 17.1 Introduction
  • 17.2 Process chemistry
  • 17.2.1 Hot compressed water
  • 17.2.2 Hydrothermal reactions
  • 17.2.3 Catalytic hydrothermal processing
  • 17.3 Process layout
  • 17.3.1 Hydrothermal carbonization
  • 17.3.2 Hydrothermal liquefaction
  • 17.3.3 Hydrothermal gasification
  • 17.4 Feedstock considerations
  • 17.5 Product distribution and properties
  • 17.5.1 Hydrothermal carbonization
  • 17.5.2 Hydrothermal liquefaction
  • 17.5.3 Hydrothermal gasification
  • 17.5.4 Composition of the process water
  • 17.6 Development of technology and current research
  • 17.6.1 Development of reactor systems
  • 17.7 Lifecycle and techno-economic assessment
  • 17.8 Conclusions
  • References
  • 18 - Production of biofuels via Fischer-Tropsch synthesis: biomass-to-liquids
  • 18.1 Introduction
  • 18.2 Biomass-to-liquids process steps and technologies
  • 18.2.1 Biomass gasification to syngas
  • 18.2.1.1 Gasifiers
  • 18.2.1.2 Syngas cleaning and conditioning
  • 18.2.2 Synthesis of biofuels via Fischer-Tropsch
  • 18.2.2.1 Fischer-Tropsch catalysts
  • Iron catalysts
  • Cobalt catalysts
  • Suitable catalysts for the BTL-FT process
  • 18.2.2.2 Reactors and process conditions
  • Fixed-bed reactors
  • Fluidized-bed reactors
  • Slurry reactors
  • 18.2.3 Upgrading of biomass-to-liquids products
  • 18.2.3.1 Hydrocracking of BTL wax to diesel
  • 18.2.3.2 Fluid catalytic cracking of BTL wax to gasoline
  • 18.2.3.3 Upgrading of BTL naphtha to gasoline
  • 18.3 Biomass-to-liquids final fuel products
  • 18.3.1 Biomass-to-liquids diesel
  • 18.3.2 Biomass-to-liquids naphtha
  • 18.4 Environmental and economic considerations of the BTL process
  • 18.5 Commercial status of the biomass-to-liquids processes
  • 18.6 Future prospects and challenges
  • References
  • 19 - Production of biofuels via bio-oil upgrading and refining
  • 19.1 Introduction
  • 19.1.1 Biomass liquefaction
  • 19.1.1.1 Fast pyrolysis
  • 19.1.1.2 Hydrothermal liquefaction
  • 19.1.2 Relevant petroleum processing technology
  • 19.1.3 Relevant fundamental chemical mechanistic studies with model compounds
  • 19.2 Upgrading of biomass liquefaction products
  • 19.2.1 Overview of potential fractionation and catalytic processing methods
  • 19.2.2 Hydroprocessing as the primary means of interest
  • 19.2.3 Scale of operation
  • 19.2.4 Operating conditions and catalysts
  • 19.2.5 Product properties
  • 19.3 Liquid fuel products from biomass through direct liquefaction and hydroprocessing
  • 19.3.1 Fuel properties based on chemical analysis
  • 19.3.2 Comparison of petroleum fuels and upgraded bio-oil and biocrude
  • 19.4 Conclusions
  • 19.4.1 Status of upgrading versus fast pyrolysis and hydrothermal liquefaction
  • 19.4.2 Potential future development
  • References
  • Four - Integrated production and application of biofuels
  • 20 - Biofuel production from food wastes
  • 20.1 Introduction
  • 20.2 Characteristics of food waste
  • 20.3 Common food waste managements
  • 20.4 Biofuels production
  • 20.4.1 Biodiesel production from food waste
  • 20.4.2 Bioethanol production from food waste
  • 20.4.2.1 Pretreatment of food waste
  • 20.4.2.2 Process strategies
  • 20.4.2.3 Large-scale ethanol production from FWs
  • 20.4.3 Hydrogen and methane production from food waste
  • 20.4.3.1 Hydrogen production
  • Substrate composition
  • Pretreatments
  • Reactor configurations
  • Process control
  • 20.4.3.2 Methane production
  • Reactor configurations
  • Single-stage strategy
  • 20.4.3.3 Two-stage combined hydrogen/methane fermentation
  • 20.5 Conclusions and future trends
  • List of abbreviations
  • Acknowledgments
  • References
  • 21 - Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct
  • 21.1 Introduction
  • 21.1.1 Biochar for climate change mitigation
  • 21.1.2 Biochar for soil conditioning
  • 21.1.3 Biochar for waste management
  • 21.2 Biochar as a coproduct in biofuels and bioenergy production
  • 21.2.1 Fast pyrolysis
  • 21.2.2 Gasification
  • 21.2.3 Hydrothermal carbonization
  • 21.3 Biochar from biorefinery residues
  • References
  • 22 - Algae for biofuels: an emerging feedstock
  • 22.1 Introduction
  • 22.2 Microalgal biomass and oil
  • 22.2.1 Biomass
  • 22.2.2 Oil content and productivity
  • 22.2.3 Fatty acid composition
  • 22.3 Oil biosynthesis in microalgae
  • 22.3.1 Fatty acid biosynthesis
  • 22.3.2 TAG biosynthesis
  • 22.3.3 Lipid bodies in microalgae
  • 22.4 Mass cultivation
  • 22.4.1 Open pond systems
  • 22.4.2 Closed photobioreactors
  • 22.4.3 Heterotrophic and mixotrophic cultivation
  • 22.4.4 Techno-economic evaluation
  • 22.5 Biomass harvesting and dewatering
  • 22.6 Oil extraction and transesterification
  • 22.7 Conclusions and future directions
  • Acknowledgments
  • References
  • 23 - Utilization of biofuels in diesel engines
  • 23.1 Introduction
  • 23.2 Utilization of vegetable pure plant oil and crude oil in diesel engines
  • 23.2.1 Introduction
  • 23.2.2 Combustion visualization
  • 23.2.2.1 Combustion bomb study
  • Fuel specification
  • Experimental apparatuses and procedure
  • 23.2.2.2 Combustion engine study
  • Experimental apparatus
  • Experimental procedure
  • Experimental results
  • Engine indicating information
  • Spray formation
  • Spray combustion phenomena, flame temperature, and soot distribution
  • 23.3 Utilization of biodiesel-based palm oil, jatropha oil, coconut oil, and kapok nut oil in diesel engines
  • 23.4 Utilization of biodiesel B5-based cat-fish fat in diesel engines
  • 23.4.1 Properties of biodiesel-based cat-fish fat
  • 23.4.2 Experimental set up and apparatus
  • 23.4.3 Test results and discussions
  • 23.4.3.1 Findings from performance tests
  • 23.4.3.2 Findings from durability test
  • 23.5 The concept of using biofuel on engines (prime mover)
  • 23.6 Conclusion and remarks
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

285,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok