Handbook of Biofuels Production

 
 
Woodhead Publishing
  • 2. Auflage
  • |
  • erschienen am 19. Mai 2016
  • |
  • 770 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100456-2 (ISBN)
 

Handbook of Biofuels Production, Second Edition, discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage.

Research and development in this field is aimed at improving the quality and environmental impact of biofuels production, as well as the overall efficiency and output of biofuels production plants. The book provides a comprehensive and systematic reference on the range of biomass conversion processes and technology.

Key changes for this second edition include increased coverage of emerging feedstocks, including microalgae, more emphasis on by-product valorization for biofuels' production, additional chapters on emerging biofuel production methods, and discussion of the emissions associated with biofuel use in engines.

The editorial team is strengthened by the addition of two extra members, and a number of new contributors have been invited to work with authors from the first edition to revise existing chapters, thus offering fresh perspectives.

  • Provides systematic and detailed coverage of the processes and technologies being used for biofuel production
  • Discusses advanced chemical, biochemical, and thermochemical biofuels production routes that are fast being developed to address the global increase in energy usage
  • Reviews the production of both first and second generation biofuels
  • Addresses integrated biofuel production in biorefineries and the use of waste materials as feedstocks
  • Englisch
  • London
Elsevier Science
  • 13,84 MB
978-0-08-100456-2 (9780081004562)
0081004567 (0081004567)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Handbook of Biofuels Production
  • Related titles
  • Handbook of Biofuels Production
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Key issues and assessment of biofuels production
  • Two - Biofuels from chemical and biochemical conversion processes and technologies
  • Three - Biofuels from thermal and thermo-chemical conversion processes and technologies
  • Four - Integrated production and application of biofuels
  • Index
  • Back Cover
  • A
  • B
  • C
  • D
  • F
  • G
  • H
  • I
  • M
  • N
  • R
  • T
  • 23 - Utilization of biofuels in diesel engines
  • 20 - Biofuel production from food wastes
  • 19 - Production of biofuels via bio-oil upgrading and refining
  • 21 - Biochar in thermal and thermochemical biorefineries-production of biochar as a coproduct
  • 22 - Algae for biofuels: an emerging feedstock
  • 16 - Production of bioalcohols via gasification
  • 17 - Production of biofuels via hydrothermal conversion
  • 18 - Production of biofuels via Fischer-Tropsch synthesis: biomass-to-liquids
  • 14 - Catalytic fast pyrolysis for improved liquid quality
  • 13 - Chemical routes for the conversion of cellulosic platform molecules into high-energy-density biofuels
  • 15 - Production of bio-syngas and bio-hydrogen via gasification
  • 9 - Biochemical production of bioalcohols
  • 10 - Production of biogas via anaerobic digestion
  • 11 - Biological and fermentative production of hydrogen
  • 12 - Biological and fermentative conversion of syngas
  • 6 - Production of biodiesel via catalytic upgrading and refining of sustainable oleagineous feedstocks
  • 7 - Biochemical catalytic production of biodiesel
  • 8 - Production of fuels from microbial oil using oleaginous microorganisms
  • 1 - Introduction: an overview of biofuels and production technologies
  • 2 - Multiple objectives policies for biofuels production: environmental, socio-economic, and regulatory issues
  • 3 - Life cycle sustainability assessment of biofuels
  • 4 - Biofuels: technology, economics, and policy issues
  • 5 - Feedstocks and challenges to biofuel development
  • 5.1 Introduction
  • 5.2 Edible vegetable raw materials for biodiesel production
  • 3.6 Conclusions
  • References
  • 4.5 Policy actions and the regulatory framework
  • 4.1 Introduction
  • 4.2 Moving from fossil fuel to biofuels: insights from socio-technical transition theory
  • 4.3 Assessing first- and next-generation biofuels
  • 2.6 Conclusions
  • 3.4 LCA considerations of biomass to biofuel conversion routes
  • 3.5 Overview of major findings of selected LCA studies in biofuel production
  • 3.1 Introduction
  • 3.2 Main challenges for biofuel sustainability
  • 3.3 Life cycle sustainability assessment methodology
  • 2.1 Introduction
  • 2.3 Emission reductions, land use, and other environmental impacts
  • 2.4 Food safety and development of rural areas
  • 2.5 Biofuels support policies
  • 1.1 Introduction
  • 1.2 Development of (bio)chemical conversion technologies
  • 1.3 Development of biological conversion technologies
  • 1.5 Process integration and biorefinery
  • 1.6 Future trends
  • Acknowledgment
  • References
  • 8.1 Introduction
  • 8.2 Oleaginous yeasts and raw materials used for microbial oil production
  • 7.6 Industrial biodiesel production using enzymes
  • 7.7 Conclusions
  • Acknowledgements
  • References
  • 8.3 The biochemistry of lipid accumulation in the oleaginous microorganisms
  • 8.4 Microbial oil production in fed-batch cultures
  • 8.5 Biodiesel production from microbial oil
  • 6.3 Recent robust technology in biodiesel catalysis
  • 7.4 New tendencies in enzymatic production of biodiesel
  • 7.5 Biofuels similar to biodiesel produced using several acyl acceptors, different to methanol
  • 7.1 Introduction
  • 7.2 Lipases
  • 7.3 Enzymatic production of biodiesel
  • 6.2 General background to biodiesel
  • Acknowledgments
  • References
  • 6.1 Introduction
  • 5.4 Raw materials for bioethanol production
  • References
  • 4.4 Economic, environmental, and social issues
  • 4.6 Conclusions
  • References
  • 5.3 Nonedible/low-cost raw materials for diesel engine biofuel production
  • 12.1 Introduction
  • 12.2 Fundamentals of syngas fermentation
  • 12.3 Bacteria for syngas conversion
  • 11.7 Conclusions and outlook
  • References
  • 11.4 Enhancing hydrogen production through metabolic engineering
  • 11.5 Hydrogen production by cell-free enzymatic systems
  • 11.6 Comparison of biohydrogen production techniques
  • 11.1 Introduction
  • 11.3 Biological hydrogen production strategies
  • 11.2 Fundamentals of biohydrogen production
  • 10.1 Introduction
  • 10.2 Factors affecting the anaerobic digestion process
  • Acknowledgments
  • References
  • 10.3 Advantages and limitations
  • 10.4 Reactor configurations
  • 10.5 Methods for enhancing the efficiency of anaerobic digestion
  • 10.6 Process modeling
  • 10.7 Process monitoring and control
  • 10.8 Biogas utilization
  • 10.9 Existing biogas installations
  • 10.10 Conclusions and future trends
  • References
  • 9.1 Introduction
  • 9.2 Types of biomass for bioalcohol production
  • 6.4 Concluding remarks
  • Acknowledgments
  • References
  • 8.6 Techno-economic evaluation of biodiesel production from microbial oil
  • References
  • 9.3 Bioalcohols
  • 9.4 New technologies for bioethanol production
  • 15.1 Introduction
  • 15.2 Biomass feedstock for gasification
  • 15.3 Biomass gasification process
  • 14.3 Catalytic pyrolysis
  • 14.4 Catalytic pyrolysis: catalysts used
  • 14.5 Catalytic pyrolysis: reactor setup
  • 13.8 Sugars to hydrocarbon fuels: aqueous phase reforming process
  • 13.9 Final remarks and future outlook
  • References
  • 14.6 Conclusion and future opportunities
  • Acknowledgments
  • References
  • 13.1 Introduction
  • 13.2 Oxygenated fuels via 5-HMF: furanic compounds
  • 12.7 Examples of commercial and semicommercial processes
  • 12.8 Conclusions for biological fermentation of syngas
  • References
  • 13.3 Levulinic acid as platform molecule to oxygenated fuels: alkyl levulinates and valeric biofuels
  • 12.5 Reactors for fermentative conversion of syngas
  • 12.6 Product recovery
  • 14.1 Introduction
  • 14.2 Pyrolysis background
  • 13.4 Oxygenated fuels via furfural: furan derivatives
  • 13.5 Blending effect of oxygenated biofuels with conventional fuels
  • 13.6 Catalytic conversion of ?-valerolactone to liquid hydrocarbon fuels
  • 13.7 Furan derivatives as platform molecules for liquid hydrocarbon fuels
  • 18.1 Introduction
  • 18.2 Biomass-to-liquids process steps and technologies
  • 16.4 Conclusions and future perspectives
  • References
  • 17.6 Development of technology and current research
  • 17.1 Introduction
  • 17.2 Process chemistry
  • 16.3 Technical and economical analysis of the oxidative coupling of methane process
  • 17.3 Process layout
  • 17.4 Feedstock considerations
  • 17.5 Product distribution and properties
  • 16.1 Introduction
  • 16.2 Gasification routes for alcohol production
  • 15.6 Current status in commercial gasification of biomass
  • 15.7 Challenges and opportunities
  • References
  • 15.4 Gasification technology
  • 15.5 Syngas technology: composition, conditioning and upgrading to valuable products
  • 22.1 Introduction
  • 22.2 Microalgal biomass and oil
  • 22.3 Oil biosynthesis in microalgae
  • 21.2 Biochar as a coproduct in biofuels and bioenergy production
  • References
  • 21.3 Biochar from biorefinery residues
  • References
  • 21.1 Introduction
  • 20.5 Conclusions and future trends
  • List of abbreviations
  • Acknowledgments
  • References
  • 19.4 Conclusions
  • 19.1 Introduction
  • 18.4 Environmental and economic considerations of the BTL process
  • 18.5 Commercial status of the biomass-to-liquids processes
  • 18.6 Future prospects and challenges
  • References
  • 17.7 Lifecycle and techno-economic assessment
  • 17.8 Conclusions
  • References
  • 18.3 Biomass-to-liquids final fuel products
  • 20.1 Introduction
  • 20.2 Characteristics of food waste
  • 20.3 Common food waste managements
  • 20.4 Biofuels production
  • 19.2 Upgrading of biomass liquefaction products
  • 19.3 Liquid fuel products from biomass through direct liquefaction and hydroprocessing
  • 23.1 Introduction
  • 23.2 Utilization of vegetable pure plant oil and crude oil in diesel engines
  • 22.4 Mass cultivation
  • 22.5 Biomass harvesting and dewatering
  • 22.6 Oil extraction and transesterification
  • 22.7 Conclusions and future directions
  • Acknowledgments
  • References
  • 23.3 Utilization of biodiesel-based palm oil, jatropha oil, coconut oil, and kapok nut oil in diesel engines
  • 23.4 Utilization of biodiesel B5-based cat-fish fat in diesel engines
  • 23.5 The concept of using biofuel on engines (prime mover)
  • 23.6 Conclusion and remarks
  • References
  • 23.4.1 Properties of biodiesel-based cat-fish fat
  • 23.4.2 Experimental set up and apparatus
  • 23.4.3 Test results and discussions
  • 22.4.1 Open pond systems
  • 22.4.3 Heterotrophic and mixotrophic cultivation
  • 22.4.4 Techno-economic evaluation
  • 23.2.1 Introduction
  • 23.2.2 Combustion visualization
  • 19.3.1 Fuel properties based on chemical analysis
  • 19.3.2 Comparison of petroleum fuels and upgraded bio-oil and biocrude
  • 15.2.3 Improved biomass feedstock for gasification
  • 19.1.2 Relevant petroleum processing technology
  • 19.2.1 Overview of potential fractionation and catalytic processing methods
  • 19.2.2 Hydroprocessing as the primary means of interest
  • 19.2.3 Scale of operation
  • 19.2.4 Operating conditions and catalysts
  • 19.2.5 Product properties
  • 20.4.1 Biodiesel production from food waste
  • 20.4.2 Bioethanol production from food waste
  • 18.3.1 Biomass-to-liquids diesel
  • 18.3.2 Biomass-to-liquids naphtha
  • 18.2.3 Upgrading of biomass-to-liquids products
  • 19.1.1 Biomass liquefaction
  • 19.4.1 Status of upgrading versus fast pyrolysis and hydrothermal liquefaction
  • 20.4.3 Hydrogen and methane production from food waste
  • 21.1.1 Biochar for climate change mitigation
  • 21.1.3 Biochar for waste management
  • 21.2.1 Fast pyrolysis
  • 21.2.2 Gasification
  • 21.2.3 Hydrothermal carbonization
  • 22.3.1 Fatty acid biosynthesis
  • 22.3.2 TAG biosynthesis
  • 22.3.3 Lipid bodies in microalgae
  • 22.2.1 Biomass
  • 22.2.2 Oil content and productivity
  • 22.2.3 Fatty acid composition
  • 15.5.1 Main contaminants
  • 15.5.2 Cleaning technologies
  • 15.4.1 Fixed bed or moving bed gasifiers
  • 15.4.3 Entrained flow gasifiers
  • 15.4.4 New developments in gasification technology
  • 15.4.2 Fluidized bed gasifiers
  • 16.2.1 Methanol production
  • 16.2.2 Ethanol production
  • 15.5.3 Upgrading technologies: from syngas to hydrogen, biofuels, and high-value chemicals
  • 17.5.1 Hydrothermal carbonization
  • 17.5.2 Hydrothermal liquefaction
  • 17.5.3 Hydrothermal gasification
  • 17.5.4 Composition of the process water
  • 17.3.1 Hydrothermal carbonization
  • 17.3.2 Hydrothermal liquefaction
  • 17.3.3 Hydrothermal gasification
  • 16.3.1 Introduction
  • 16.3.2 Technical analysis
  • 16.3.3 Economical analysis
  • 16.3.4 Conclusions: oxidative coupling of methane process analysis
  • 17.2.1 Hot compressed water
  • 17.2.2 Hydrothermal reactions
  • 17.2.3 Catalytic hydrothermal processing
  • 17.6.1 Development of reactor systems
  • 18.2.1 Biomass gasification to syngas
  • 18.2.2 Synthesis of biofuels via Fischer-Tropsch
  • 13.7.1 5-HMF upgrading via CC coupling reactions
  • 13.4.1 Furfural hydrogenation toward oxygenated biofuels
  • 13.4.2 Esters and ethers from furfuryl alcohol
  • 13.4.3 ?-Valerolactone from furfural
  • 14.2.1 Pyrolysis
  • 14.2.2 Fast pyrolysis
  • 14.2.3 Distribution of fast pyrolysis products from certain biomass components
  • 14.2.4 Fast pyrolysis products
  • 12.6.1 Liquid-liquid extraction
  • 12.6.4 Pervaporation
  • 12.5.1 Continuous stirred-tank reactor
  • 12.5.2 Bubble column reactors
  • 12.4.2 Influence of pH value
  • 12.4.5 Influence of syngas composition
  • 12.4.6 Influence of mass transfer
  • 13.3.1 Esterification: alkyl levulinates
  • 13.3.2 ?-Valerolactone and valeric biofuels
  • 13.2.1 2,5-Dimethylfuran
  • 13.2.2 Ethers of 5-HMF: ethoxymethyfurfural
  • 13.2.3 Ester of 5-HMF: acetoxymethyfurfural
  • 14.5.1 In situ and ex situ processing in catalytic fast pyrolysis
  • 14.5.2 Process parameters
  • 14.4.1 Activated alumina catalysts
  • 14.4.2 Zeolite catalysts
  • 14.4.3 Mesoporous catalysts
  • 14.4.4 Fluid catalytic cracking catalysts
  • 14.4.5 Transition metal catalysts
  • 14.4.6 Carbonate-derived catalysts
  • 14.3.1 Catalytic upgrading
  • 14.3.2 Catalytic pyrolysis: improved pyrolysis oil generation or production of higher-value chemicals
  • 14.3.3 Deoxygenation
  • 14.3.5 Decarboxylation
  • 14.3.6 Decarbonylation
  • 15.3.1 Reactions and thermodynamics of biomass gasification
  • 15.3.2 Kinetics of biomass gasification
  • 15.3.3 Influence of operating conditions on biomass gasification
  • 15.3.4 Process variations and strategies to maximize gas products
  • 15.2.1 Biomass properties as gasification fuel
  • 15.1.1 Hydrogen and syngas
  • 15.1.2 Production routes
  • 15.1.3 A brief piece of history
  • 9.3.1 Types of bioalcohols
  • 9.3.2 Biomethanol
  • 9.3.4 Biobutanol
  • 9.3.5 Biopropanol
  • 9.2.1 Characteristics of biomass
  • 9.2.2 Availability of biomass
  • 9.2.3 Processing of biomass
  • 10.5.1 Pretreatments
  • 9.4.2 Technologies to reduce substrate and product inhibition
  • 10.2.1 Temperature
  • 10.2.3 Feedstock composition
  • 10.1.1 The principles of the anaerobic digestion process
  • 11.2.1 Why is hydrogen produced?
  • 11.3.2 Biophotolysis of water by microalgae and cyanobacteria
  • 11.3.3 Photofermentation by anoxygenic photosynthetic bacteria
  • 11.3.4 Microbial electrolysis cell
  • 11.3.1 Dark fermentation of organic matters
  • 11.1.1 Hydrogen is a suitable alternative sustainable energy
  • 11.1.2 Advantages of biological production of hydrogen over physical/chemical methods
  • 11.6.1 Hydrogen production rate
  • 11.6.2 Energy conversion efficiency
  • 11.4.1 Engineering strategies for dark fermentation
  • 11.4.2 Engineering strategies for biophotolysis
  • 11.4.3 Engineering strategies for photofermentation
  • 10.5.2 Anaerobic codigestion
  • 11.3.5 Hybrid systems
  • 12.4.1 Influence of media composition
  • 5.3.1 Green canola seed
  • 5.3.2 Callophyllum inophyllum L.
  • 5.3.3 Annona
  • 5.3.4 Croton megalocarpus
  • 5.3.6 Waste oils
  • 5.3.7 Other sources of low-cost, renewable oil for biofuel production
  • 4.4.1 Socioeconomic issues
  • 4.4.2 Socio-environmental issues
  • 5.4.2 Challenges for sustainable bioethanol production
  • 5.4.1 Most frequent raw materials for bioethanol production
  • 6.1.1 Major issues in biodiesel production
  • 6.2.3 Oil feedstocks for biodiesel production
  • 6.2.1 Biodiesel as an alternative fuel
  • 6.2.2 The biodiesel production process
  • 7.3.1 Extracellular and intracellular lipases
  • 7.3.2 Lipase immobilization
  • 7.5.1 Biodiesel produced together to glycerol triacetate in the same transesterification process of oils and fats
  • 7.5.2 Biodiesel produced together to fatty acid glycerol carbonate esters in the same transesterification process of oils and fats
  • 7.5.3 Biodiesel produced together to monoacylglycerol in the same transesterification process of oils and fats
  • 7.4.1 Novel immobilization techniques
  • 7.4.3 Ionic liquids as solvent in enzyme-catalyzed transesterification
  • 7.4.4 Enzyme-catalyzed transesterification under supercritical CO2 medium
  • 6.3.1 Homogeneous vs. heterogeneous catalysis
  • 6.3.2 Solid base catalysts
  • 6.3.3 Solid acid catalysts
  • 7.3.3 Variables affecting the enzymatic transesterification reaction
  • 8.5.1 Biodiesel properties
  • 8.5.2 Direct versus indirect transesterification of microbial oil
  • 8.3.1 General remarks
  • 8.3.2 Lipid accumulation from fermentation of sugars and related substrates used as the sole carbon source
  • 8.3.3 Lipid production from fermentation of hydrophobic materials used as the sole carbon source
  • 8.2.1 Food supply chain wastes
  • 8.2.2 Biodiesel industry by-products
  • 8.2.3 Lignocellulosic resources
  • 8.2.4 Other industrial wastes and by-product streams
  • 2.5.1 Climate-change mitigation policies
  • 2.2.1 European Union
  • 2.2.2 Brazil
  • 2.2.3 United States
  • 2.2.4 China
  • 3.3.1 Goal and scope definition
  • 3.3.2 Life Cycle Inventory
  • 3.3.3 Life Cycle Impact Assessment (LCIA)
  • 3.3.4 Interpretation
  • 3.2.1 The necessity for "green biofuels"
  • 3.2.2 Effective sustainability schemes for biofuels
  • 3.2.3 Scientific studies for biofuel sustainability certification
  • 3.5.1 Selected LCA studies on energy crops
  • 3.5.2 Selected LCA studies on solid biofuels upgrade
  • 3.5.3 Selected LCA studies on biofuel thermochemical pretreatment
  • 3.4.1 First-generation biofuels
  • 3.4.3 Third- and fourth-generation biofuels
  • 2.6.1 Future prospects
  • 4.3.1 First generation: bioethanol, biodiesel, and other biofuels
  • 4.5.1 The Brazilian incentive and regulatory systems
  • 4.5.2 The US incentive and regulatory systems
  • 4.5.3 The European incentive and regulatory systems
  • 4.3.2 Beyond the first-generation biofuels
  • 4.3.3 Integrated biorefineries: making biofuel along with other high-added value products
  • 5.2.1 Rapeseed/canola seed
  • 5.2.2 Sunflower seed
  • 5.2.3 Palm tree
  • 5.2.4 Soybean seed
  • 5.2.5 Peanut seed
  • 5.2.6 Cotton seed
  • 4.3.1.1 Bioethanol
  • 4.3.1.2 Biodiesel
  • 4.3.1.3 Other biofuels
  • 7.3.3.1 Lipid source
  • 7.3.3.2 Acyl acceptor
  • 7.3.3.4 Water content
  • 7.3.3.7 Pretreatment for improving lipase stability
  • 6.3.3.1 Templated mesoporous materials: effect of pore networks and surface functionality
  • 6.3.3.2 Hierarchical macroporous-mesoporous solid acid and base materials
  • 7.3.2.1 Immobilization of lipase by physical adsorption
  • 7.3.2.2 Immobilization of lipase by ionic bonding versus covalent bonding
  • 7.3.2.3 Immobilization of lipase by entrapment or encapsulation
  • 6.2.2.1 The transesterification reaction
  • 6.2.3.1 First and second generation biodiesel fuels
  • 6.2.3.2 Nonedible vegetable oils and their lipid composition
  • 6.1.1.1 Oil depletion issues
  • 6.1.1.2 Problems of homogeneously catalyzed biodiesel production
  • 5.4.1.1 Raw materials employed by country
  • 12.4.1.1 Nutrients
  • 12.4.1.2 Reducing agent
  • 11.3.1.1 Pathway
  • 11.3.1.2 Feedstock and microorganisms
  • 11.3.4.1 Mechanism
  • 11.3.4.3 Microorganisms and substrates
  • 11.3.2.1 Direct biophotolysis
  • 11.3.2.2 Indirect biophotolysis
  • 9.4.2.1 Granular starch hydrolyzing (GSH) enzymes (reducing substrate inhibition)
  • 9.4.2.2 In situ ethanol stripping using vacuum (reducing product inhibition)
  • 10.5.1.1 Mechanical pretreatments
  • 10.5.1.3 Chemical pretreatments
  • 10.5.1.4 Biological pretreatments
  • 9.4.1.1 High fermentable corn (HFC) hybrids
  • 9.4.1.2 Corn with endogenous alpha-amylase
  • 9.4.1.3 Oil-producing sugarcane (lipidcane)
  • 15.2.2.1 Wood and woody biomass
  • 15.2.2.2 Herbaceous and agricultural biomass
  • 15.3.4.2 Catalytic gasification
  • 15.3.4.3 Plasma gasification
  • 15.3.4.4 Microwave-assisted gasification
  • 15.3.3.1 Heating rate and residence time
  • 15.3.3.2 Gasifying agent, equivalence ratio, and steam/biomass ratio
  • 15.3.3.5 Ash content and composition
  • 14.5.2.1 Temperature
  • 14.5.2.4 Vapor residence time
  • 12.4.6.1 Bioreactor design
  • 12.4.6.2 Additives
  • 14.2.4.1 Liquid bio-oil
  • 14.2.4.2 Solid char
  • 14.2.4.3 Gases
  • 18.2.2.1 Fischer-Tropsch catalysts
  • 18.2.2.2 Reactors and process conditions
  • 18.2.1.1 Gasifiers
  • 18.2.1.2 Syngas cleaning and conditioning
  • 15.5.3.1 Production of H2
  • 15.5.3.2 Ammonia
  • 15.5.3.4 Production of liquid fuels: Fischer-Tropsch
  • 15.5.3.5 Production of synthetic natural gas: methanation
  • 15.5.3.8 Syngas fermentation
  • 15.4.2.1 Bubbling fluidized bed (BFB) gasifier
  • 15.4.2.2 Circulating fluidized bed (CFB) gasifier
  • 15.4.4.1 Indirect gasifiers
  • 15.4.4.2 Plasma gasifiers
  • 15.4.4.3 Other gasifier designs
  • 15.4.1.1 Downdraft gasifier
  • 15.4.1.2 Updraft gasifier
  • 15.4.1.3 Crossdraft gasifier
  • 15.5.2.1 Tars
  • 15.5.2.2 Sulfur
  • 15.5.2.4 Ammonia
  • 15.5.1.1 Sulfur
  • 15.5.1.2 Ammonia
  • 20.4.3.3 Two-stage combined hydrogen/methane fermentation
  • 20.4.3.1 Hydrogen production
  • 20.4.3.2 Methane production
  • 19.1.1.1 Fast pyrolysis
  • 18.2.3.1 Hydrocracking of BTL wax to diesel
  • 18.2.3.2 Fluid catalytic cracking of BTL wax to gasoline
  • 18.2.3.3 Upgrading of BTL naphtha to gasoline
  • 20.4.2.1 Pretreatment of food waste
  • 20.4.2.2 Process strategies
  • 20.4.2.3 Large-scale ethanol production from FWs
  • 23.2.2.1 Combustion bomb study
  • 23.4.3.1 Findings from performance tests
  • 23.4.3.2 Findings from durability test
  • 23.2.2.2 Combustion engine study
  • Experimental apparatus
  • Experimental results
  • Fuel specification
  • Experimental apparatuses and procedure
  • Reactor configurations
  • Substrate composition
  • Pretreatments
  • Reactor configurations
  • Process control
  • Water gas shift reaction
  • Separation
  • Fixed-bed reactors
  • Fluidized-bed reactors
  • Slurry reactors
  • Iron catalysts
  • Cobalt catalysts
  • Engine indicating information
  • Spray formation
  • Spray combustion phenomena, flame temperature, and soot distribution

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

285,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok