Osteoimmunology

Interactions of the Immune and Skeletal Systems
 
 
Academic Press
  • 2. Auflage
  • |
  • erschienen am 23. September 2015
  • |
  • 376 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-800627-6 (ISBN)
 

Osteoimmunology: Interactions of the Immune and Skeletal Systems, Second Edition, explores the advancements that have been made in the field during the last 40 years, including valuable information on our understanding of the interactions between hematopoietic, immune, and bone cells, now known as the field of osteoimmunology.

This comprehensive work offers the most extensive summaries of research trends in the field and their translation into new therapeutics.

Early chapters deal with the development of osteoblasts, osteoclasts, hematopoietic stem cells, T and B-lymphocytes, and communications between these cellular elements, while later sections contain discussions of the signaling pathways by which RANKL influences osteoclast development and function. Subsequent chapters explore the effects that estrogen has on bone and the immune system, the development of pathologic conditions, and the growing research around osteoporosis, Paget's disease, the genetics of bone disease, and bone cancer metastasis.


  • Explains the intricate interaction between the immune system and bone
  • Features detailed discussions of the key cellular and molecular mechanisms governing the homeostasis of the individual systems
  • Facilitates greater understanding of osteoimmunologic networks, their environments, and how this understanding leads to better treatments for human diseases involving both systems
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 20,09 MB
978-0-12-800627-6 (9780128006276)
0128006277 (0128006277)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Foreword
  • Preface
  • Chapter 1 - Overview: The Developing Field of Osteoimmunology
  • References
  • Chapter 2 - The Origins of the Osteoclast
  • First descriptions of the osteoclast
  • Early controversies: are osteoclasts capable of bone resorption?
  • Early controversies: hematopoietic or mesenchymal origin of the osteoclast?
  • Osteoclast: a hematopoietic cell
  • Osteoclasts: cells of the myeloid lineage
  • Advancing the field: culturing osteoclasts in vitro
  • Identification of RANKL and OPG
  • Defining osteoclast precursors within myeloid cell development
  • Heterogeneity among osteoclasts
  • Origins of the osteoclast through the lens of evolution
  • Osteoclast-Like Activity in Invertebrates
  • Osteoclasts in Fish
  • Conclusions
  • Acknowledgments
  • References
  • Chapter 3 - Trafficking of Osteoclast Precursors
  • Introduction
  • A century-long search for the identity of osteoclast precursors
  • Intravital two-photon imaging of bone tissues
  • Osteoclast precursors are motile and circulate throughout the body
  • Guidance cues sensed by osteoclast precursors in bone marrow
  • S1P-dependent migratory control of osteoclast precursors
  • Differences between osteoclast precursor and mature osteoclast migration mechanisms
  • Control of osteoclast migration and function by Rho GTPases
  • Role of integrins in osteoclast precursor migration
  • Control of osteoclast precursor differentiation by GPCR-mediated inhibition of cell migration
  • Unanswered questions in osteoclast precursor trafficking and differentiation
  • References
  • Chapter 4 - Osteoclast Biology: Regulation of Formation and Function
  • Introduction
  • RANKL and RANK: an osteoclastogenic cytokine and its receptor
  • TRAF6: the multifunctional signaling molecule activated by RANK
  • What happens downstream of TRAF6?
  • The role of NF-kB in osteoclast differentiation
  • The critical role of AP-1 transcription factors
  • MAPKs activated by RANKL
  • NFATc1 is a master transcription factor of osteoclast differentiation
  • Autoamplification of NFATc1 and its epigenetic regulation
  • Inhibition of NFATc1 induction
  • Transcriptional control governed by NFATc1
  • Costimulatory receptor signals for RANK: FcRg and DAP12
  • The ligands for the costimulatory receptors
  • Importance of ITAM costimulatory signals in humans: Nasu-Hakola disease
  • Additional costimulatory signals involved in osteoclastogenesis
  • Receptors signaling through DAP12
  • The inhibitory signals for costimulatory signals
  • Src family kinases: activation of ITAM signaling
  • Syk kinase: downstream of DAP12/FcRg?
  • PLCg2: enzyme and adaptor molecule
  • Tec kinases: integrating RANK and ITAM signaling
  • Negative regulatory role of DAP12
  • M-CSF and c-Fms: a road to proliferation and survival
  • M-CSF signaling
  • Erk, PI3K, and c-Fos signaling
  • The osteoclast's job: bone resorption
  • Osteoclast cytoskeleton: the podosomes and the sealing zone
  • Osteoclast cytoskeleton: the microtubules and the sealing zone
  • Osteoclast functional structure: the ruffled border
  • Osteoclast and bone matrix: role of avß3 integrin
  • Integrin-associated proteins
  • M-CSF and the osteoclast cytoskeleton
  • Coupling factors released in osteoclastic bone resorption
  • Stimulation of bone formation by clastokines
  • Inhibition of bone formation by clastokines
  • Coupling by cell-cell interaction between osteoclasts and osteoblasts
  • Conclusions
  • References
  • Chapter 5 - Osteoimmunology and the Osteoblast
  • Advantages of immune-osteoblast interaction
  • Immune-osteoblast interaction in fracture repair
  • Immune Cells Set the Order and Tempo of Fracture Repair
  • Dual role for TNF-a
  • TNF is an inhibitor of Wnt signaling
  • Coupling of skeletal homeostasis with innate and acquired immunity
  • Normal Bone Remodeling
  • Osteoblast support of hematopoiesis
  • Osteoblast support of B cell differentiation
  • Osteoblasts support hematopoietic stem cells
  • Conclusions
  • References
  • Chapter 6 - The Variety of Osteocyte Function
  • Introduction
  • The osteocyte network
  • New tools to study osteocyte function
  • Osteocytes and bone remodeling
  • Osteocytes and mineral homeostasis
  • Osteocytes as mechanosensors
  • Osteocytes and hematopoiesis
  • Conclusions
  • References
  • Chapter 7 - Bone Marrow Hematopoietic Niches
  • Introduction
  • Hematopoiesis occurs within the bone marrow and is closely linked to skeletal development
  • A role for the osteoblast lineage in supporting hematopoietic stem cells
  • A perivascular niche for HSCs involves mesenchymal progenitors
  • Signaling pathways implicated in microenvironment-HSC communication
  • CXCL12/CXCR4
  • SCF
  • Angiopoietin-1/Tie2
  • Thrombopoietin/Mpl
  • Osteopontin
  • Calcium-Sensing Receptor
  • N-Cadherin
  • Parathyroid Hormone Receptor Signaling
  • Notch Signaling
  • Wnt Signaling
  • Prostaglandin E2
  • TGFß1
  • Perivascular osteoblast precursors support hematopoiesis
  • Other components of the hematopoietic niche
  • Macrophages
  • Endothelial Cells
  • Sympathetic Neurons
  • Adipocytes
  • Clinical implications
  • HSC Engraftment After Transplantation
  • Microenvironment and Disease
  • Effect of Aging-Related Bone Loss on Hematopoiesis
  • The bone marrow HSC microenvironment is complex
  • References
  • Chapter 8 - RANK and RANKL of Bones, T Cells, and the Mammary Glands
  • RANK and RANKL in bone
  • Downstream signaling of RANK/RANKL
  • Rank/Rankl mutations in human patients
  • Osteoimmunology
  • RANK and RANKL in the organogenesis of the immune system
  • Immunotolerance
  • RANK/RANKL and metastases
  • RANK/RANKL and the mammary gland
  • RANK and RANKL and their function in mammary stem cell biology
  • Breast cancer
  • Is there even more?
  • Denosumab, a rational treatment for bone loss
  • Conclusions
  • References
  • Chapter 9 - The Effects of Immune Cell Products (Cytokines and Hematopoietic Cell Growth Factors) on Bone Cells
  • Receptor activator of nuclear factor-kB ligand (RANKL), receptor activator of nuclear factor-kB (RANK) and osteoprotegerin ...
  • Colony-stimulating factor-1
  • Additional colony stimulating factors
  • Interleukin-1
  • Tumor necrosis factor
  • Additional TNF superfamily members
  • Fas-Ligand
  • TNF-Related Apoptosis Inducing Ligand (TRAIL)
  • CD40-ligand
  • Interleukin-6
  • Additional interleukin-6 family members
  • Interleukin-11
  • Leukemia Inhibitory Factor
  • Oncostatin M
  • Interleukin-7
  • Interleukin-8 and other chemokines
  • Interleukin-8
  • CCL2
  • CCL3
  • CCL9
  • CXCL12 and CXCR4
  • CX3CR1
  • CCR1
  • CCR2
  • Interleukin-10
  • Interleukin 12
  • Interleukin 15
  • Interleukin 17, Interleukin 23, and Interleukin 27
  • Interleukin 18 and interleukin 33
  • Interferons
  • Additional cytokine
  • Conclusions
  • References
  • Chapter 10 - Coupling: The Influences of Immune and Bone Cells
  • Introduction: bone remodeling and the concept of coupling
  • Modeling and remodeling in anabolic therapy for the skeleton
  • Osteoclast-derived factors that promote osteoblast differentiation
  • Matrix-Derived Signals Released During Resorption
  • Factors Secreted by the Osteoclast That Promote Bone Formation
  • Do Macrophages Also Stimulate Bone Formation in the BMU?
  • Other Contributions of Macrophages to Bone Formation in Remodeling
  • Proteins Expressed on the Osteoclast Cell Membrane That Stimulate Osteoblast Differentiation
  • Summary of Section II: Multiple Cell Types Promote Bone Formation During the Remodeling Process
  • What is the target cell of osteoclast-derived factors that may promote bone formation?
  • How do osteocytes contribute to coupling?
  • Promotion of bone formation in the BMU during the reversal phase
  • The influences of T and B lymphocytes on the coupling process
  • Signals between the bone surface and the vasculature
  • Isolation of the remodeling site by the bone remodeling canopy
  • Conclusions
  • References
  • Chapter 11 - The Role of the Immune System in the Development of Osteoporosis and Fracture Risk
  • Introduction
  • Connections between bone and the immune system
  • Bone remodeling
  • Periarticular bone structure and bone loss in inflammatory arthritis
  • Bone involvement in rheumatic diseases
  • Bone Changes in Rheumatic Diseases
  • Bone Erosions
  • Bone Marrow Edema (BME)
  • Local Peri-Inflammatory Bone Changes
  • Generalized Bone Changes
  • Fracture Healing
  • Methods for quantifying changes in bone in inflammatory rheumatic diseases
  • CR
  • High-resolution CR
  • Radiogrammetry and DXR
  • Photonabsorptiometry
  • Magnetic resonance imaging (MRI)
  • Quantitative ultrasound (QUS) of the bone
  • Musculoskeletal ultrasound (MSUS)
  • Quantitative computed tomography (QCT)
  • High resolution peripheral quantitative computed tomography (HRpQCT)
  • Bone and inflammation markers
  • Clinical risk factors for low BMD, falls, and fractures
  • From fracture risk evaluation to fracture prevention: a 5-step plan
  • Case Finding
  • Risk Evaluation
  • Clinical Risk Factors
  • Measurements and Imaging Tools
  • Biomarkers
  • Risk of falls in RA
  • Differential diagnosis
  • Fracture prevention in inflammatory joint diseases
  • General Measures
  • Calcium and Vitamin D
  • Treatment of Glucocorticoid Osteoporosis
  • Antirheumatic Drugs and the Effect on Bone Metabolism and BMD
  • Follow up
  • Conclusions
  • Key messages
  • References
  • Chapter 12 - The Role of Sex Steroids in the Effects of Immune System on Bone
  • Introduction
  • Estrogen and other sex steroids
  • Estrogens
  • Androgens
  • Progesterone
  • Regulation of Sex Steroid Secretion by the Feedback Mechanisms
  • Interactions of sex steroids and immune cells
  • Sex Steroid-Induced Immunomodulation
  • Immunomodulatory Effects of Estrogens
  • Immunomodulatory Effects of Progesterone
  • Immunomodulatory Effects of Androgens
  • Role of Immune Cells in the Impact of Sex Steroids on Bone Cells
  • Effects on T and B Lymphopoiesis
  • Effects on T Lymphocytes
  • Effects on B Lymphocytes
  • Effects on Other Immune Cells
  • Effects on Cytokine and Chemokine Production
  • Cytokines
  • RANKL/RANK/OPG System
  • Chemokines
  • Effects of sex steroid-modulated immune cells on bone cells
  • Osteoclasts
  • Osteoblasts and Osteocytes
  • Conclusions
  • References
  • Chapter 13 - The Role of the Immune System in the Local and Systemic Bone Loss of Inflammatory Arthritis
  • Introduction
  • Bone disease associated with RA
  • Joint Margin and Subchondral Bone Loss in RA
  • Peri-Articular Bone Loss
  • Generalized Bone Loss
  • Bone changes in spondyloarthritis and psoriatic arthritis
  • Conclusions
  • Acknowledgments
  • References
  • Chapter 14 - Osteoarthritis and the Immune System
  • Introduction
  • Physiological structural organization of periarticular bone
  • Periarticular bone changes in osteoarthritis
  • Regulatory mechanisms involved in OA bone pathology
  • Bone marrow lesions and targeted bone remodeling
  • Calcified cartilage, bone, and articular cartilage interactions in OA
  • Osteophytes
  • The role of synovium in OA cartilage and bone pathology
  • Conclusions
  • References
  • Chapter 15 - Inflammatory Bowel Disease and Bone
  • Introduction
  • Pathophysiology of IBD and osteo-immune connections
  • The Immunological Steady State in the Intestine
  • IBD: The Subversion of the Steady State
  • IBD and osteoimmunology
  • Effects of IBD on Bone Mass
  • General Disease-Related and Treatment Factors by Which IBD Affects Bone Mass
  • Disease-Related Immune Factors by Which IBD Affects Bone Mass
  • RANKL and Osteoprotegerin
  • Conclusions
  • References
  • Chapter 16 - The Role of the Immune System and Bone Cells in Acute and Chronic Osteomyelitis
  • Introduction
  • Mechanism of microbial infection in the pathogenesis in osteomyelitis
  • Bacterial persistence in chronic osteomyelitis
  • The host response to osteomyelitis
  • Osteoblasts and their multiple roles in bone infections
  • Cellular responses to acute and chronic osteomyelitis
  • Osteoclast mobilization
  • Osteoclasts as immune cells
  • DCs and osteoclasts in infection
  • The role of B-cells in bone infection and the potential of passive immunization
  • References
  • Chapter 17 - The Role of the Immune System in Fracture Healing
  • Bone repair as a postnatal regenerative process
  • Fracture healing cascade
  • Role of mesenchymal stem cells in the modulation of immune function
  • Cytokines involved in fracture healing
  • Tumor Necrosis Factor Alpha
  • RANK, RANKL, and OPG
  • Interleukin-1 (IL-1)
  • Interleukin-6 (IL-6)
  • Phase-specific roles of cytokines in fracture healing
  • TNF-a
  • Inflammatory Phase Modulation
  • TNF-a Effects on Chondrocytes and Osteoblasts
  • TNF-a Effects on Osteoclasts and Remodeling
  • RANK Ligand and Osteoprotegerin
  • Role in Early Fracture Repair
  • Initiation of Remodeling
  • IL-1
  • Inflammatory Phase Regulation
  • Regulator of Callus Remodeling
  • IL-6
  • Inflammatory Phase Regulation
  • Callus Formation and Maturation
  • Role of nonsteroidal anti-inflammatory drugs in fracture healing
  • Biological effects of COX-2 inhibition
  • Clinical effects of COX inhibitors on fracture healing
  • References
  • Chapter 18 - The Role of the Immune System in the Effects of Cancer on Bone
  • Introduction
  • The vicious cycle of bone metastasis
  • Bone as the preferred site for metastasis
  • Role of mesenchymal stromal cells in bone metastasis
  • T lymphocytes and bone metastasis
  • T regulatory cells
  • Role of macrophages and macrophage-derived cells in bone metastasis
  • Tumor associated macrophages
  • Myeloid derived suppressor cells (MDSC)
  • Dendritic cells (DC)
  • B Cells
  • Conclusions
  • References
  • Chapter 19 - Osteoimmunology in the Oral Cavity (Periodontal Disease, Lesions of Endodontic Origin, and Orthodontic Tooth Movement)
  • Introduction
  • Periodontal diseases
  • Gingivitis
  • Periodontal Disease
  • Prostaglandins and Periodontal Disease
  • Chemokines and Periodontal Disease
  • Innate Immune Response
  • Innate Immune Response - Cell Types
  • Cytokines of the Innate Immune Response and Periodontal Disease
  • Adaptive Immune Response
  • The Th17/Tregs Archetype
  • Cytokine Control of RANKL/OPG Balance in Periodontal Environment
  • Uncoupled Bone Formation and Periodontal Disease
  • Lesions of endodontic origin
  • Innate Immune Response and Lesions of Endodontic Origin
  • Cytokines of the Innate Immune Response
  • Lesions of Endodontic Origin and the Adaptive Immune Response
  • Orthodontic tooth movement
  • Conclusions
  • Acknowledgment
  • References
  • Chapter 20 - Marrow Adipose Tissue and its Interactions with the Skeletal, Hematopoietic, and Immune Systems
  • Introduction
  • Adipose development and expansion
  • Measurement of marrow adipose tissue
  • The cellular origin of bone marrow adipocytes
  • Molecular regulation of BM adipogenesis
  • Cellular interactions between adipocytes, bone, hematopoietic and immune cells
  • Conclusions
  • Acknowledgments
  • References
  • Subject Index
  • Back Cover

List of Contributors


Antonios O. Aliprantis MD, PhD,     Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

Sheila N. Bello-Irizarry PhD,     Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA

Ryan Berry PhD,     Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA

Karine Briot MD, PhD,     Department of Rheumatology, INSERM U1153, Paris Descartes University, Cochin Hospital, Paris, France

Julia F. Charles MD, PhD,     Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

Yongwon Choi PhD,     Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA

John L. Daiss PhD,     Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA

Jean-Michel Dayer MD,     Faculty of Medicine, Centre Medical Universitaire, Geneva, Switzerland

Karen L. de Mesy Bentley BS, MS

Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester

Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA

Thomas A. Einhorn MD,     Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA

Roberta Faccio PhD,     Department of Orthopedics, Washington University in St. Louis School of Medicine, Saint Louis, MO, USA

Jackie A. Fretz PhD,     Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale School of Medicine, New Haven, CT, USA

Gustavo P. Garlet DDS, MS, PhD,     Department of Biological Sciences, School of Dentistry of Bauru, University of Sao Paulo, Bauru, Brazil

Louis C. Gerstenfeld PhD,     Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA

Piet Geusens MD, PhD,     Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands

Mary B. Goldring PhD,     The Hospital for Special Surgery and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA

Steven R. Goldring MD,     The Hospital for Special Surgery and Department of Medicine, Weill Cornell Medical College, New York, NY, USA

Ellen M. Gravallese MD,     Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA

Dana T. Graves DDS, DMSc,     Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA

Danka Grcevic MD, PhD,     Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia

Mark C. Horowitz PhD,     Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA

Masaru Ishii MD, PhD

Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Osaka

CREST, Japan Science and Technology Agency, Tokyo, Japan

Rayyan A. Kayal BDS, DSc,     Department of Periodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Junichi Kikuta MD, PhD

Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Osaka

CREST, Japan Science and Technology Agency, Tokyo, Japan

Anne Klibansky MD,     Department of Medicine, Neuroendocrinology, Massachusetts General Hospital, Boston, MA, USA

Natasa Kovacic MD, PhD,     Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia

Henry M. Kronenberg MD,     Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Sun-Kyeong Lee PhD,     Department of Medicine, UCONN Center on Aging, University of Connecticut Health Center, Farmington, CT, USA

Joseph Lorenzo MD,     Department of Medicine and Orthopaedics, University of Connecticut Health Center, Farmington, CT, USA

Ormond MacDougald PhD,     Departments of Molecular and Integrative Physiology and Internal Medicine (Metabolism, Endocrinology & Diabetes Division), University of Michigan School of Medicine, Ann Arbor, MI, USA

T. John Martin MD, DSc

St. Vincent's Institute of Medical Research, Fitzroy

Department of Medicine, St. Vincent's Hospital, Melbourne, The University of Melbourne, Fitzroy, Victoria, Australia

Mary C. Nakamura MD

Department of Medicine, Division of Rheumatology, University of California, San Francisco

Arthritis/Immunology Section, Veterans Administration Medical Center, San Francisco, CA, USA

Mark S. Nanes MD, PhD

Veterans Affairs Medical Center and Division of Endocrinology, Metabolism, and Lipids

Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA

Erin Nevius PhD,     Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA

Kohei Nishitani MD, PhD,     Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA

Charles A. O'Brien PhD,     Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences; the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA

Thomas Oates DMD, PhD,     Department of Periodontics, University of Texas Health Science Center, San Antonio, TX, USA

Josef Martin Penninger MD,     Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria

João P. Pereira PhD,     Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA

Julian M.W. Quinn PhD,     The Garvan Institute, Darlinghurst, New South Wales, Australia

Matthew S. Rodeheffer PhD,     Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale School of Medicine, New Haven, CT, USA

Garson David Roodman MD, PhD,     Division of Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA

Clifford J. Rosen MD,     The Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA

Christian Roux MD, PhD,     Department of Rheumatology, INSERM U1153, Paris Descartes University, Cochin Hospital, Paris, France

Georg Schett MD,     Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany

Edward M. Schwarz PhD

Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester

Department of Pathology and...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok