Bioprocess Engineering

Kinetics, Sustainability, and Reactor Design
 
 
Elsevier (Verlag)
  • 2. Auflage
  • |
  • erschienen am 29. August 2016
  • |
  • 1172 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-444-63793-2 (ISBN)
 

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Second Edition, provides a comprehensive resource on bioprocess kinetics, bioprocess systems, sustainability, and reaction engineering. Author Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics, batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering, also introducing key principles that enable bioprocess engineers to engage in analysis, optimization, and design with consistent control over biological and chemical transformations.

The quantitative treatment of bioprocesses is the central theme in this book, with more advanced techniques and applications being covered in depth. This updated edition reflects advances that are transforming the field, ranging from genetic sequencing, to new techniques for producing proteins from recombinant DNA, and from green chemistry, to process stability and sustainability.

The book introduces techniques with broad applications, including the conversion of renewable biomass, the production of chemicals, materials, pharmaceuticals, biologics, and commodities, medical applications, such as tissue engineering and gene therapy, and solving critical environmental problems.


  • Includes the mechanistic description of biotransformations and chemical transformations
  • Provides quantitative descriptions of bioprocesses
  • Contains extensive illustrative drawings, which make the understanding of the subject easy
  • Includes bioprocess kinetics and reactor analysis
  • Contains examples of the various process parameters, their significance, and their specific practical use
  • Incorporates sustainability concepts into the various bioprocesses


Dr. Shijie Liu is a professor of bioprocess engineering at the State University of New York - College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, USA. His contributions include volume averaging in porous media, kinetics of reactions on solid surfaces, cooperative adsorption theory, the theory of interactive enzymes, and the kinetic modeling of polyauxic growth / fermentation. Much of his childhood was spent in the country side of Sichuan Province in China, finished high school in 1978 from Luxi High School, in a little town just a few kilometers away from his home of birth. He graduated from Chengdu University of Science and Technology (now merged into Sichuan University) with a BS degree in Chemical Engineering in 1982. His early career started in the chemical industrial city of Lanzhou, China before moving to Canada. He obtained his PhD degree in Chemical Engineering from the University of Alberta in 1992 under Prof. Jacob H. Masliyah. Since then, he worked in the University of Alberta and Alberta Research Council before joining SUNY ESF in 2005. He has over 150 peer-reviewed publications today and maintains strong collaborations with colleagues in China from various universities. He taught a variety of courses including transport phenomena, numerical methods, mass transfer, chemical kinetics, pulp and paper technology, colloids and interfaces, chemical reaction engineering, bioreaction engineering, bioprocess kinetics and systems engineering, bioefinery processes, advanced biocatalysis, advanced bioprocess kinetics, and bioprocess engineering. Dr. Liu currently serves as the Editor-In-Chief of the Journal of Biobased Materials and Bioenergy, as well as the Editor-In-Chief of the Journal of Bioprocess Engineering and Biorefinery.
  • Englisch
  • Oxford
  • |
  • Niederlande
Elsevier Science
  • 57,36 MB
978-0-444-63793-2 (9780444637932)
0444637931 (0444637931)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design
  • Copyright
  • Contents
  • Preface to the Second Edition
  • Preface to the First Edition
  • Acronyms, Abbreviations, and Symbols
  • Chapter 1: Introduction
  • 1.1. Biological Cycle
  • 1.2. Green Chemistry
  • 1.3. Sustainability
  • 1.4. Biorefinery
  • 1.5. Biotechnology and Bioprocess Engineering
  • 1.6. Mathematics, Biology, and Engineering
  • 1.7. The Story of Penicillin: The Dawn of Bioprocess Engineering
  • 1.8. Bioprocesses: Regulatory Constraints
  • 1.9. The Pillars of Bioprocess Kinetics and Systems Engineering
  • 1.10. Summary
  • Bibliography
  • Problems
  • Chapter 2: An Overview of Biological Basics
  • 2.1. Cells and Organisms
  • 2.1.1. Microbial Diversity
  • 2.1.2. How Cells Are Named
  • 2.1.3. Viruses
  • 2.1.4. Prions
  • 2.1.5. Prokaryotes
  • 2.1.5.1. Eubacteria
  • 2.1.5.2. Archaebacteria
  • 2.1.6. Eukaryotes
  • 2.2. Stem Cell
  • 2.3. Cell Chemistry
  • 2.3.1. Amino Acids and Proteins
  • 2.3.2. Monosaccharides
  • 2.3.2.1. Aldoses
  • 2.3.2.1.1. D-Hexoses
  • 2.3.2.1.2. Pentoses
  • 2.3.2.1.3. D-Tetroses
  • 2.3.2.1.4. D-Trioses
  • 2.3.2.2. Ketoses
  • 2.3.2.2.1. Ketohexoses
  • 2.3.2.2.2. Ketopentoses
  • 2.3.2.2.3. Ketotetroses
  • 2.3.2.2.4. Ketotriose
  • 2.3.2.3. Deoxy Sugars
  • 2.3.3. Disaccharides
  • 2.3.4. Polysaccharides
  • 2.3.4.1. Starch
  • 2.3.4.2. Glycogen
  • 2.3.4.3. Fructan
  • 2.3.4.4. Cellulose
  • 2.3.4.5. Hemicelluloses
  • 2.3.5. Phytic Acid and Inositol
  • 2.3.6. Chitin and Chitosan
  • 2.3.7. Lignin
  • 2.3.8. Lipids, Fats, and Steroids
  • 2.3.9. Nucleic Acids, RNA, and DNA
  • 2.4. Cell Feed
  • 2.4.1. Macronutrients
  • 2.4.2. Micronutrients
  • 2.4.3. Growth Media
  • 2.5. Summary
  • Bibliography
  • Problems
  • Chapter 3: An Overview of Chemical Reaction Analysis
  • 3.1. Chemical Species
  • 3.2. Chemical Reactions
  • 3.3. Reaction Rates
  • 3.3.1. Definition of the Rate of Reaction, rA
  • 3.3.2. Rate of a Single Irreversible Reaction
  • 3.3.3. Rate of an Elementary Reaction
  • 3.3.4. Rate of a Reversible Reaction
  • 3.3.5. Rates of Multiple Reactions
  • 3.4. Approximate Reactions
  • 3.5. Rate Coefficients
  • 3.6. Stoichiometry
  • 3.7. Yield and Yield Factor
  • 3.8. Reaction Rates Near Equilibrium
  • 3.9. Energy Regularity
  • 3.10. Classification of Multiple Reactions and Selectivity
  • 3.11. Coupled Reactions
  • 3.12. Reactor Mass Balances
  • 3.13. Reaction Energy Balances
  • 3.14. Reactor Momentum Balance
  • 3.15. Ideal Reactors
  • 3.16. Bioprocess Systems Optimization
  • 3.17. Summary
  • Bibliography
  • Problems
  • Chapter 4: Batch Reactor
  • 4.1. Isothermal Batch Reactors
  • 4.2. Batch Reactor Sizing
  • 4.3. Nonisothermal Batch Reactors
  • 4.4. Numerical Solutions of Batch Reactor Problems
  • 4.5. Graphical Solutions of Batch Reactor Sizing From Concentration Profiles
  • 4.6. Summary
  • Bibliography
  • Problems
  • Chapter 5: Ideal Flow Reactors
  • 5.1. Flow Rate, Residence Time, Space Time, Space Velocity, and Dilution Rate
  • 5.2. Plug Flow Reactor
  • 5.3. Gasification and Fischer-Tropsch Technology
  • 5.4. Continuous Stirred Tank Reactor and Chemostat
  • 5.5. Multiple Reactors
  • 5.6. Recycle Reactors
  • 5.7. Distributed Feed and Withdraw
  • 5.7.1. Distributed Feed
  • 5.7.2. Reactive Distillation
  • 5.7.3. Membrane Reactor
  • 5.8. PFR or CSTR?
  • 5.9. Steady Nonisothermal Flow Reactors
  • 5.10. Reactive Extraction
  • 5.11. Graphic Solutions Using Batch Concentration Data
  • 5.11.1. Solution of a PFR Using Batch Concentration Data
  • 5.11.2. Solution of a CSTR Using Batch Concentration Data
  • 5.12. Summary
  • Bibliography
  • Problems
  • Chapter 6: Kinetic Theory and Reaction Kinetics
  • 6.1. Elementary Kinetic Theory
  • 6.1.1. Distribution Laws
  • 6.1.2. Collision Rate
  • 6.2. Collision Theory of Reaction Rates
  • 6.3. Reaction Rate Analysis/Approximation
  • 6.3.1. Fast Equilibrium Step Approximation
  • 6.3.2. Pseudo-Steady-State Hypothesis
  • 6.4. Unimolecular Reactions
  • 6.5. Free Radicals
  • 6.6. Kinetics of Acid Hydrolysis
  • 6.7. Parametric Estimation
  • 6.8. Summary
  • Bibliography
  • Problems
  • Chapter 7: Enzymes
  • 7.1. How Enzymes Work
  • 7.2. Simple Enzyme Kinetics
  • 7.2.1. The Fast Equilibrium Step Assumption
  • 7.2.2. The Pseudosteady-State Hypothesis
  • 7.2.3. Specific Activity
  • 7.3. Multiple-Substrate and Competitive Enzyme Kinetics
  • 7.3.1. Reversible Reactions
  • 7.3.2. Reactions With Unbound Substrates
  • 7.3.3. Enzyme-Substituted Reactions-the Ping-Pong Mechanism
  • 7.3.4. Allosteric Enzymes
  • 7.3.5. Enzyme Inhibition
  • 7.3.5.1. Allosteric Inhibition
  • 7.3.5.2. Competitive Inhibition
  • 7.3.6. Substrate Inhibition
  • 7.3.7. Substrate Push
  • 7.4. pH Effects
  • 7.5. Temperature Effects
  • 7.6. Insoluble Substrates
  • 7.7. Immobilized Enzyme Systems
  • 7.7.1. Methods of Immobilization
  • 7.7.1.1. Entrapment
  • 7.7.1.2. Surface Immobilization
  • 7.7.2. Electrostatic and Steric Effects in Immobilized Enzyme Systems
  • 7.8. Analysis of Bioprocess With Enzymatic Reactions
  • 7.9. Large-Scale Production of Enzymes
  • 7.10. Medical and Industrial Utilization of Enzymes
  • 7.11. Kinetic Approximation: Why Michaelis-Menten Equation Works
  • 7.11.1. Pseudosteady State Hypothesis
  • 7.11.2. Fast Equilibrium Step Approximation
  • 7.11.3. Modified Fast Equilibrium Approximation
  • 7.12. Summary
  • Bibliography
  • Problems
  • Chapter 8: Chemical Reactions on Solid Surfaces
  • 8.1. Catalysis
  • 8.2. How Does Reaction With Solid Occur?
  • 8.3. Adsorption and Desorption
  • 8.3.1. Ideal Surfaces and Langmuir Adsorption Isotherm
  • 8.3.2. Idealization of Nonideal Surfaces
  • 8.3.3. UniLan Adsorption Isotherms
  • 8.3.4. Cooperative Adsorption
  • 8.3.4.1. Cooperative Adsorption of Single Species
  • 8.3.4.2. Cooperative Competitive Adsorption
  • 8.3.5. Common Empirical Approximate Isotherms
  • 8.3.6. Pore Size and Surface Characterization
  • 8.4. LHHW: Surface Reactions With Rate-Controlling Steps
  • 8.5. Chemical Reactions on Nonideal Surfaces Based on the Distribution of Interaction Energy
  • 8.6. Chemical Reactions on Nonideal Surfaces With the Multilayer Approximation
  • 8.7. Kinetics of Reactions on Surfaces Where the Solid Is Either a Product or Reactant
  • 8.8. Decline of Surface Activity: Catalyst Deactivation
  • 8.9. Summary
  • Bibliography
  • Problems
  • Chapter 9: Cell Metabolism
  • 9.1. The Central Dogma
  • 9.2. DNA Replication: Preserving and Propagating the Cellular Message
  • 9.3. Transcription: Sending the Message
  • 9.3.1. Reverse Transcription
  • 9.4. Translation: Message to Product
  • 9.4.1. Genetic Code: Universal Message
  • 9.4.2. Translation: How the Machinery Works
  • 9.4.3. Post Translational Processing: Making the Product Useful
  • 9.5. Metabolic Regulation
  • 9.5.1. Genetic-Level Control: Which Proteins are Synthesized?
  • 9.5.2. Metabolic Pathway Control
  • 9.6. How a Cell Senses Its Extracellular Environment
  • 9.6.1. Mechanisms to Transport Small Molecules Across Cellular Membranes
  • 9.6.2. Role of Cell Receptors in Metabolism and Cellular Differentiation
  • 9.7. Major Metabolic Pathways
  • 9.7.1. Bioenergetics
  • 9.7.2. Glucose Metabolism: Glycolysis and the Tricarboxylic Acid Cycle
  • 9.7.3. Metabolism of Common Plant Biomass Derived Monosaccharides
  • 9.7.4. Fermentative Pathways
  • 9.7.5. Respiration
  • 9.7.6. Control Sites in Aerobic Glucose Metabolism
  • 9.7.7. Metabolism of Nitrogenous Compounds
  • 9.7.8. Nitrogen Fixation
  • 9.7.9. Metabolism of Hydrocarbons
  • 9.8. Overview of Biosynthesis
  • 9.9. Overview of Anaerobic Metabolism
  • 9.10. Interrelationships of Metabolic Pathways
  • 9.11. Overview of Autotrophic Metabolism
  • 9.12. The Monod Equation: FES Approximation Through Metabolic Pathways
  • 9.13. Summary
  • Bibliography
  • Problems
  • Chapter 10: Interactive Enzyme and Molecular Regulation
  • 10.1. Protein Oligomerization and Interactive Enzyme
  • 10.1.1. Covalently Bound Oligomers
  • 10.1.2. Noncovalent Association Oligomerization
  • 10.1.3. Domain Swapping Oligomerization
  • 10.1.4. Interactive Enzyme Oligomer Mixture Model
  • 10.2. Ligand Binding and Cooperativity
  • 10.2.1. Single Ligand Binding on Homosteric Enzymes
  • 10.2.2. Sequential Single Ligand Binding on Allosteric Enzymes
  • 10.2.3. Single-Ligand Binding on Random-Access Allosteric Enzymes
  • 10.3. Competitive Multiligand Binding on an Interactive Enzyme
  • 10.3.1. Competitive Ligand Binding on a Homosteric Enzyme
  • 10.3.1.1. Two-Site Homosteric Enzyme
  • 10.3.1.2. Three-Site Homosteric Enzyme
  • 10.3.1.3. Four-Site Homosteric Enzyme
  • 10.3.1.4. n-Site Homosteric Enzyme
  • 10.3.2. Site-Sequential Multiligand Binding on Allosteric Enzymes
  • 10.3.2.1. Two-Site Sequential Allosteric Multiple-Ligand Interactive Binding
  • 10.3.2.2. Three-Site Sequential Allosteric Multiple Ligand Interactive Binding
  • 10.3.2.3. n-Site Sequential Allosteric Multiple Ligand Interactive Binding
  • 10.3.3. Multiligand Binding on Random-Access Allosteric Enzymes
  • 10.3.3.1. Two-Site Random-Access Allosteric Enzyme
  • 10.3.3.2. Three-Site Allosteric Enzyme
  • 10.3.4. Enzymes With Homosteric Paired Allosteric Sites
  • 10.4. Catalytic Reaction Rate on Interactive Enzymes
  • 10.4.1. Catalytic Reactions on Homosteric Sites
  • 10.4.2. Catalytic Reactions on Site-Sequential Allosteric Sites
  • 10.4.3. Random-Access Allosteric Enzymes
  • 10.5. Kinetics of Polymorphic Catalysis and Allosteric Modulation
  • 10.5.1. Substrate-Free Polymorph Interconversion
  • 10.5.1.1. Substrate-Free Interconvertible Polymorph Of Limiting Structural Changes
  • 10.5.1.2. Substrate-Free Interconvertible Polymorph of No Structural Changes
  • 10.5.2. Substrate-Inert Polymorph Interconversion
  • 10.5.3. Oligomers of Paired Allosteric Sites
  • 10.6. Influence of a Competitive Effector on Interactive Enzymes
  • 10.7. Summary
  • Bibliography
  • Problems
  • Chapter 11: How Cells Grow
  • 11.1. Quantifying Biomass
  • 11.1.1. Cell Number Density
  • 11.1.2. Cell Mass Concentration
  • 11.1.2.1. Direct Methods
  • 11.1.2.2. Indirect Methods
  • 11.2. Batch Growth Patterns
  • 11.3. Biomass Yield
  • 11.4. Approximate Growth Kinetics and Monod Equation
  • 11.5. Cell Death Rate
  • 11.6. Cell Maintenance and Endogenous Metabolism
  • 11.7. Product Yield
  • 11.8. Oxygen Demand for Aerobic Microorganisms
  • 11.9. Effect of Temperature
  • 11.10. Effect of pH
  • 11.11. Effect of Redox Potential
  • 11.12. Effect of Electrolytes and Substrate Concentration
  • 11.13. Heat Generation by Microbial Growth
  • 11.14. Overview of Microbial Growth Kinetic Models
  • 11.14.1. Unstructured Growth Models
  • 11.14.2. Simple Growth Rate Model: Monod Equation
  • 11.14.3. Modified Monod Equation with Growth Inhibitors
  • 11.14.3.1. Substrate Inhibition
  • 11.14.3.2. Product Inhibition
  • 11.14.3.3. Cell Inhibition
  • 11.14.3.4. Inhibition by Toxic Compounds
  • 11.14.4. Multiple Limiting Substrates
  • 11.14.4.1. Complementary Substrates
  • 11.14.4.2. Substitutable Substrates
  • 11.14.4.3. Mixed Types of Substrates
  • 11.14.5. Simplest Reaction Network (or Simplest Metabolic) Model
  • 11.14.6. Simplest Metabolic Pathway
  • 11.14.7. Cybernetic Models
  • 11.14.8. Selective Uptake Model
  • 11.14.9. Computational Systems Biology
  • 11.15. Summary
  • Bibliography
  • Problems
  • Chapter 12: Cell Cultivation
  • 12.1. Batch Culture
  • 12.2. Continuous Culture
  • 12.2.1. Chemostat Devices for Continuous Culture
  • 12.2.2. The Ideal Chemostat
  • 12.2.3. The Chemostat as a Tool
  • 12.3. Choosing the Cultivation Method
  • 12.3.1. Chemostat With Recycle
  • 12.3.2. Multistage Chemostat Systems
  • 12.4. Waste Water Treatment Process
  • 12.5. Immobilized Cell Systems
  • 12.5.1. Active Immobilization of Cells
  • 12.5.2. Passive Immobilization: Biological Films
  • 12.6. Solid Substrate Fermentations
  • 12.7. Fedbatch Operations
  • 12.7.1. Theoretical Considerations
  • 12.7.1.1. Culture Volume
  • 12.7.1.2. Limiting Substrate in the Reactor
  • 12.7.1.3. Cell biomass
  • 12.7.1.4. Extracellular Products
  • 12.7.1.5. Temperature in the Reactor
  • 12.7.2. Ideal Isothermal Fed-Batch Reactors
  • 12.7.3. Isothermal Pseudosteady State Fed-Batch Growth
  • 12.8. Summary
  • Bibliography
  • Problems
  • Chapter 13: Evolution and Genetic Engineering
  • 13.1. Mutations
  • 13.1.1. What Causes Genetic Mutations?
  • 13.1.1.1. Spontaneous Mutations
  • 13.1.1.2. Induced Mutations
  • 13.1.2. Types of Mutations
  • 13.1.2.1. Germ-Line Mutations and Somatic Mutations
  • 13.1.2.2. Lethal, Nonlethal, and Neutral Mutations
  • 13.1.2.3. Point Mutations
  • 13.1.2.3.1. Transitions or Transversions
  • 13.1.2.3.2. Insertions
  • 13.1.2.3.3. Deletions
  • 13.1.3. Large-Scale Mutations
  • 13.1.3.1. Chromosomal Structural Mutations
  • 13.1.3.2. Changes in Chromosome Number
  • 13.2. Selection
  • 13.2.1. Natural Selection
  • 13.2.2. Artificial Selection (Selection of Mutants With Useful Mutations)
  • 13.3. Natural Mechanisms for Gene Transfer and Rearrangement
  • 13.3.1. Genetic Recombination
  • 13.3.2. Transformation
  • 13.3.3. Transduction
  • 13.3.4. Episomes and Conjugation
  • 13.3.5. Transposons: Internal Gene Transfer
  • 13.4. Techniques of Genetic Engineering
  • 13.4.1. Gene Synthesis
  • 13.4.2. Complimentary DNA or cDNA
  • 13.4.3. Cloning Genes Into a Plasmid
  • 13.4.4. Polymerase Chain Reaction
  • 13.4.5. Vectors and Plasmids
  • 13.4.5.1. Restriction Enzymes
  • 13.4.5.2. DNA Ligase
  • 13.4.5.3. Plasmids
  • 13.4.5.4. Gene Transfer
  • 13.5. Applications of Genetic Engineering
  • 13.6. The Product and Process Decisions
  • 13.7. Host-Vector System Selection
  • 13.7.1. Escherichia Coli
  • 13.7.2. Gram-Positive Bacteria
  • 13.7.3. Lower Eucaryotic Cells
  • 13.7.4. Mammalian Cells
  • 13.7.5. Insect Cell-Baculovirus System
  • 13.7.6. Transgenic Animals
  • 13.7.7. Transgenic Plants and Plant Cell Culture
  • 13.7.8. Comparison of Strategies
  • 13.8. Regulatory Constraints on Genetic Processes
  • 13.9. Metabolic Engineering
  • 13.10. Protein Engineering
  • 13.11. Summary
  • Bibliography
  • Problems
  • Chapter 14: Sustainability: Humanity Perspective
  • 14.1. What is Sustainability?
  • 14.2. Sustainability of Humanity
  • 14.3. Water
  • 14.3.1. The Water Cycle
  • 14.3.2. Utilization of Hydro Energy
  • 14.4. CO2 and Biomass
  • 14.5. Woody Biomass Use and Desired Sustainable State
  • 14.6. Solar Energy
  • 14.7. Geothermal Energy
  • 14.8. Summary
  • Bibliography
  • Problems
  • Chapter 15: Sustainability and Stability
  • 15.1. Feed Stability of a CSTR
  • 15.1.1. Multiple Steady States
  • 15.1.2. Stability of Steady State
  • 15.1.3. Effect of Feed Parameters on MSS
  • 15.2. Thermal Stability of a CSTR
  • 15.3. Approaching Steady State
  • 15.4. Catalyst Instability
  • 15.4.1. Fouling
  • 15.4.2. Poisoning
  • 15.4.3. Sintering
  • 15.4.4. Catalyst Activity Decay
  • 15.4.5. Spent Catalyst Regeneration
  • 15.5. Genetic Instability
  • 15.5.1. Segregational Instability
  • 15.5.2. Plasmid Structural Instability
  • 15.5.3. Host Cell Mutations
  • 15.5.4. Growth Rate-Dominated Instability
  • 15.5.5. Considerations in Plasmid Design to Avoid Process Problems
  • 15.5.6. Host-Vector Interactions and Genetic Instability
  • 15.6. Mixed Cultures
  • 15.6.1. Major Classes of Interactions in Mixed Cultures
  • 15.6.2. Interactions of Two Species Fed on the Same Limiting Substrate
  • 15.6.3. Interactions of Two Mutualistic Species
  • 15.6.4. Predator and Prey Interactions
  • 15.6.5. Lotka-Volterra Model: A Simplified Predator-Prey Interaction Model
  • 15.6.6. Industrial Applications of Mixed Cultures
  • 15.6.7. Mixed Cultures in Nature
  • 15.7. Summary
  • Bibliography
  • Problems
  • Chapter 16: Mass Transfer Effects: Immobilized and Heterogeneous Reaction Systems
  • 16.1. How Does Transformation Occur in a Heterogeneous System?
  • 16.2. Molecular Diffusion and Mass Transfer Rate
  • 16.3. External Mass Transfer
  • 16.4. Reactions in Isothermal Porous Catalysts
  • 16.4.1. Asymptote of Effectiveness Factor and Generalized Thiele Modulus
  • 16.4.2. Isothermal Effectiveness Factor for KA=0
  • 16.4.2.1. Effectiveness Factor for a Zeroth Order Reaction in an Isothermal Porous Slab
  • 16.4.2.2. Effectiveness Factor for a Zeroth Order Reaction in an Isothermal Porous Sphere
  • 16.4.3. Isothermal Effectiveness Factor for KA8
  • 16.4.3.1. Effectiveness Factor for a First-Order Reaction in an Isothermal Porous Slab
  • 16.4.3.2. Effectiveness Factor for a First-Order Reaction in an Isothermal Porous Sphere
  • 16.4.4. Effectiveness Factor for Isothermal Porous Catalyst
  • 16.4.4.1. Isothermal Effectiveness Factor in a Porous Slab
  • 16.4.4.2. Isothermal Effectiveness Factor in a Porous Sphere
  • 16.5. Mass Transfer Effects in Nonisothermal Porous Particles
  • 16.6. External and Internal Mass Transfer Effects
  • 16.7. Encapsulation Immobilization
  • 16.8. External and Internal Surface Effects
  • 16.9. The Shrinking Core Model
  • 16.9.1. Time Required to Completely Dissolve a Porous Slab Full of Fast-Reactive Materials
  • 16.9.2. Time Required to Completely Dissolve a Porous Sphere Full of Fast-Reactive Materials
  • 16.10. Summary
  • Bibliography
  • Problems
  • Chapter 17: Bioreactor Design Operation
  • 17.1. Bioreactor Selection
  • 17.2. Reactor Operational Mode Selection
  • 17.3. Aeration, Agitation, and Heat Transfer
  • 17.4. Scale-Up
  • 17.5. Scale-Down
  • 17.6. Bioinstrumentation and Controls
  • 17.7. Sterilization of Process Fluids
  • 17.7.1. Batch Thermal Sterilization
  • 17.7.2. Continuous Thermal Sterilization
  • 17.7.2.1. Thermal Sterilization in a CSTR
  • 17.7.2.2. Thermal Sterilization in a PFR
  • 17.7.2.3. Thermal Sterilization in a Laminar-Flow Tubular Reactor
  • 17.7.2.4. Thermal Sterilization in a Turbulent Flow Tubular Reactor
  • 17.7.3. Sterilization of Liquids
  • 17.7.4. Sterilization of Gases
  • 17.7.5. Ensuring Sterility
  • 17.8. Aseptic Operations and Practical Considerations for Bioreactor System Construction
  • 17.8.1. Equipment, Medium Transfer, and Flow Control
  • 17.8.2. Stirrer Shaft
  • 17.8.3. Fermenter Inoculation and Sampling
  • 17.8.4. Materials of Construction
  • 17.8.5. Sparger Design
  • 17.8.6. Evaporation Control
  • 17.9. Effect of Imperfect Mixing
  • 17.9.1. Compartment Model
  • 17.9.2. Surface Adhesion Model
  • 17.10. Summary
  • Bibliography
  • Problems
  • Chapter 18: Combustion, Reactive Hazard, and Bioprocess Safety
  • 18.1. Biological Hazards
  • 18.2. Identifying Chemical Reactivity Hazards
  • 18.2.1. Chemical Hazard Labeling
  • 18.2.2. Chemical Reactivity Hazard
  • 18.3. Heat, Flames, Fires, and Explosions
  • 18.4. Probabilities, Redundancy, and Worst-Case Scenarios
  • 18.5. Chain Reactions
  • 18.6. Autooxidation and Safety
  • 18.6.1. A Simple Model of Autooxidation
  • 18.6.2. Spoilage of Food
  • 18.6.3. Antioxidants
  • 18.7. Combustion
  • 18.7.1. Hydrogen Oxidation
  • 18.7.2. Chain-Branching Reactions
  • 18.7.3. Alkane Oxidation
  • 18.7.4. Liquid Alkane Oxidation
  • 18.7.5. Thermal Ignition
  • 18.7.6. Thermal and Chemical Autocatalysis
  • 18.8. Premixed Flames
  • 18.8.1. Stability of a Tube Flame
  • 18.8.2. Premixed Burner Flames
  • 18.8.3. Diffusion Flames
  • 18.8.4. Laminar and Turbulent Flames
  • 18.9. Heat Generation
  • 18.9.1. Radiation
  • 18.9.2. Flammability Limits
  • 18.10. Combustion of Liquids and Solids
  • 18.10.1. Pyrolysis
  • 18.10.2. Coke and Charcoal
  • 18.10.3. The Campfire or Charcoal Grill
  • 18.10.4. Solid Wood or Coal Combustion
  • 18.10.5. Gasification
  • 18.11. Solid and Liquid Explosives
  • 18.12. Explosions and Detonations
  • 18.13. Reactor Safety
  • 18.14. Summary
  • Bibliography
  • Problems
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

158,27 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok