Introduction to AC Machine Design

 
 
Wiley-IEEE Press
  • erschienen am 5. Oktober 2017
  • |
  • 544 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-119-35209-9 (ISBN)
 
The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior
AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter.
Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design:
* Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior
* Introduces electrical machine design to neophytes while also being a resource for experienced designers
* Fully examines AC machine design, beginning with basic electromagnetic principles
* Covers the many facets of the induction machine design
Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.
1. Auflage
  • Englisch
  • Somerset
  • |
  • USA
John Wiley & Sons
  • 15,58 MB
978-1-119-35209-9 (9781119352099)
1119352096 (1119352096)
weitere Ausgaben werden ermittelt
THOMAS A. LIPO, PhD is an Emeritus Professor at the University of Wisconsin-Madison and also a Research Professor at Florida State University. He has published over 700technical papers as well as 52 patents, 5 books, and 8 book chapters. Dr. Lipo is a LifeFellow of IEEE, and recipient of the IEEE Medal in Power Engineering. He previouslyco-published Pulse Width Modulation for Power Converters: Principles and Practice withWiley-IEEE Press.
  • "IEEE Press"
  • "Title page"
  • "Copyright"
  • "Dedication"
  • "Preface and Acknowledgments"
  • "List of Principal Symbols"
  • "About the Author"
  • "CHAPTER 1 MAGNETIC CIRCUITS"
  • "1.1 Biotâ??Savart Law"
  • "1.2 The Magnetic Field B"
  • "1.3 Exampleâ??Computation of Flux Density B"
  • "1.4 The Magnetic Vector Potential A"
  • "1.5 Exampleâ??Calculation of Magnetic Field from the Magnetic Vector Potential"
  • "1.6 Concept of Magnetic Flux"
  • "1.7 The Electric Field E"
  • "1.8 Ampere's Law"
  • "1.9 Magnetic Field Intensity H"
  • "1.10 Boundary Conditions for B AND H"
  • "1.11 Faraday's Law"
  • "1.12 Induced Electric Field Due to Motion"
  • "1.13 Permeance, Reluctance, and the Magnetic Circuit"
  • "1.14 Exampleâ??Square Toroid"
  • "1.15 Multiple Circuit Paths"
  • "1.16 General Expression for Reluctance"
  • "1.17 Inductance"
  • "1.18 Exampleâ??Internal Inductance of a Wire Segment"
  • "1.19 Magnetic Field Energy"
  • "1.20 The Problem of Units"
  • "1.21 Magnetic Paths Wholly in Iron"
  • "1.22 Magnetic Materials"
  • "1.23 Exampleâ??Transformer Structure"
  • "1.24 Magnetic Circuits with Air Gaps"
  • "1.25 Exampleâ??Magnetic Structure with Saturation"
  • "1.26 Exampleâ??Calculation for Seriesâ??Parallel Iron Paths"
  • "1.27 Multiple Winding Magnetic Circuits"
  • "1.28 Magnetic Circuits Applied to Electrical Machines"
  • "1.29 Effect of Excitation Coil Placement"
  • "1.30 Conclusion"
  • "Reference"
  • "CHAPTER 2 THE MMF AND FIELD DISTRIBUTION OF AN AC WINDING"
  • "2.1 MMF and Field Distribution of a Full-Pitch Winding for a two Pole Machine"
  • "2.2 Fractional Pitch Winding for a Two-Pole Machine"
  • "2.3 Distributed Windings"
  • "2.4 Concentric Windings"
  • "2.5 Effect of Slot Openings"
  • "2.6 Fractional Slot Windings"
  • "2.7 Winding Skew"
  • "2.8 Pole Pairs and Circuits Greater than One"
  • "2.9 MMF Distribution for Three-Phase Windings"
  • "2.10 Concept of an Equivalent Two-Phase Machine"
  • "2.11 Conclusion"
  • "References"
  • "CHAPTER 3 MAIN FLUX PATH CALCULATIONS USING MAGNETIC CIRCUITS"
  • "3.1 The Main Magnetic Circuit of an Induction Machine"
  • "3.2 The Effective Gap and Carter's Coefficient"
  • "3.3 The Effective Length"
  • "3.4 Calculation of Tooth Reluctance"
  • "3.5 Example 1â??Tooth MMF Drop"
  • "3.6 Calculation of Core Reluctance"
  • "3.7 Example 2â??MMF Drop Over Main Magnetic Circuit"
  • "3.8 Magnetic Equivalent Circuit"
  • "3.9 Flux Distribution in Highly Saturated Machines"
  • "3.10 Calculation of Magnetizing Reactance"
  • "3.11 Example 3â??Calculation of Magnetizing Inductance"
  • "3.12 Conclusion"
  • "References"
  • "CHAPTER 4 USE OF MAGNETIC CIRCUITS IN LEAKAGE REACTANCE CALCULATIONS"
  • "4.1 Components of Leakage Flux in Induction Machines"
  • "4.2 Specific Permeance"
  • "4.3 Slot Leakage Permeance Calculations"
  • "4.4 Slot Leakage Inductance of a Single-Layer Winding"
  • "4.5 Slot Leakage Permeance of Two-Layer Windings"
  • "4.6 Slot Leakage Inductances of a Double-Cage Winding"
  • "4.7 Slot Leakage Inductance of a Double-Layer Winding"
  • "4.8 End-Winding Leakage Inductance"
  • "4.9 Stator Harmonic or Belt Leakage"
  • "4.10 Zigzag Leakage Inductance"
  • "4.11 Example 4-â??Calculation of Leakage Inductances"
  • "4.12 Effective Resistance and Inductance Per Phase of Squirrel-Cage Rotor"
  • "4.13 Fundamental Component of Rotor Air Gap MMF"
  • "4.14 Rotor Harmonic Leakage Inductance"
  • "4.15 Calculation of Mutual Inductances"
  • "4.16 Example 5-â??Calculation of Rotor Leakage Inductance Per Phase"
  • "4.17 Skew Leakage Inductance"
  • "4.18 Example 6-â??Calculation of Skew Leakage Effects"
  • "4.19 Conclusion"
  • "References"
  • "CHAPTER 5 CALCULATION OF INDUCTION MACHINE LOSSES"
  • "5.1 Introduction"
  • "5.2 Eddy Current Effects in Conductors"
  • "5.3 Calculation of Stator Resistance"
  • "5.4 Example 7â??Calculation of Stator and Rotor Resistance"
  • "5.5 Rotor Parameters of Irregularly Shaped Bars"
  • "5.6 Categories of Electrical Steels"
  • "5.7 Core Losses Due to Fundamental Flux Component"
  • "5.8 Stray Load and No-Load Losses"
  • "5.9 Calculation Of Surface Iron Losses Due To Stator Slotting"
  • "5.10 Calculation Of Tooth Pulsation Iron Losses"
  • "5.11 Friction And Windage Losses"
  • "5.12 Example 8â??Calculation of Iron Loss Resistances"
  • "5.13 Conclusion"
  • "References"
  • "CHAPTER 6 PRINCIPLES OF DESIGN"
  • "6.1 Design Factors"
  • "6.2 Standards for Machine Construction"
  • "6.3 Main Design Features"
  • "6.4 The D2L Output Coefficient"
  • "6.5 The D3L Output Coefficient"
  • "6.6 Power Loss Density"
  • "6.7 The D2.5L Sizing Equation"
  • "6.8 Choice of Magnetic Loading"
  • "6.9 Choice of Electric Loading"
  • "6.10 Practical Considerations Concerning Stator Construction"
  • "6.11 Rotor Construction"
  • "6.12 The Design Process"
  • "6.13 Effect of Machine Performance by a Change in Dimension"
  • "6.14 Conclusion"
  • "References"
  • "CHAPTER 7 THERMAL DESIGN"
  • "7.1 The Thermal Problem"
  • "7.2 Temperature Limits and Maximum Temperature Rise"
  • "7.3 Heat Conduction"
  • "7.4 Heat Convection on Plane Surfaces"
  • "7.5 Heat Flow Across the Air Gap"
  • "7.6 Heat Transfer by Radiation"
  • "7.7 Cooling Methods and Systems"
  • "7.8 Thermal Equivalent Circuit"
  • "7.9 Example 10-â??Heat Distribution of 250 HP Induction Machine"
  • "7.10 Transient Heat Flow"
  • "7.11 Conclusion"
  • "References"
  • "CHAPTER 8 PERMANENT MAGNET MACHINES"
  • "8.1 Magnet Characteristics"
  • "8.2 Hysteresis"
  • "8.3 Permanent Magnet Materials"
  • "8.4 Determination of Magnet Operating Point"
  • "8.5 Sinusoidally FED Surface PM Motor"
  • "8.6 Flux Density Constraints"
  • "8.7 Current Density Constraints"
  • "8.8 Choice of Aspect Ratio"
  • "8.9 Eddy Current Iron Losses"
  • "8.10 Equivalent Circuit Parameters"
  • "8.11 Temperature Constraints and Cooling Capability"
  • "8.12 Magnet Protection"
  • "8.13 Design for Flux Weakening"
  • "8.14 PM Motor with Inset Magnets"
  • "8.15 Cogging Torque"
  • "8.16 Ripple Torque"
  • "8.17 Design using Ferrite Magnets"
  • "8.18 Permanent Machines with Buried Magnets"
  • "8.19 Conclusion"
  • "Acknowledgment"
  • "References"
  • "CHAPTER 9 ELECTROMAGNETIC DESIGN OF SYNCHRONOUS MACHINES"
  • "9.1 Calculation of Useful Flux Per Pole"
  • "9.2 Calculation of Direct and Quadrature Axis Magnetizing Inductance"
  • "9.3 Determination of Field Magnetizing Inductance"
  • "9.4 Determination of d-Axis Mutual Inductances"
  • "9.5 Calculation of Rotor Pole Leakage Permeances"
  • "9.6 Stator Leakage Inductances of a Salient Pole Synchronous Machine"
  • "9.7 The Amortisseur Winding Parameters"
  • "9.8 Mutual and Magnetizing Inductances of the Amortisseur Winding"
  • "9.9 Direct Axis Equivalent Circuit"
  • "9.10 Referral of Rotor Parameters to the Stator"
  • "9.11 Quadrature Axis Circuit"
  • "9.12 Power and Torque Expressions"
  • "9.13 Magnetic Shear Stress"
  • "9.14 Field Current Profile"
  • "9.15 Conclusion"
  • "References"
  • "CHAPTER 10 FINITE-ELEMENT SOLUTION OF MAGNETIC CIRCUITS"
  • "10.1 Formulation of The Two-Dimensional Magnetic Field Problem"
  • "10.2 Significance of The Vector Potential"
  • "10.3 The Variational Method"
  • "10.4 Nonlinear Functional and Conditions for Minimization"
  • "10.5 Description of the Finite-Element Method"
  • "10.6 Magnetic Induction and Reluctivity in the Triangle Element"
  • "10.7 Functional Minimization"
  • "10.8 Formulation of the Stiffness Matrix Equation"
  • "10.9 Consideration of Boundary Conditions"
  • "10.10 Step-By-Step Procedure for Solving the Finite-Element Problem"
  • "10.11 Finite-Element Modeling of Permanent Magnets"
  • "10.12 Conclusion"
  • "10.A Appendix"
  • "References"
  • "Appendix A Computation of Bar Current"
  • "Appendix B Fem Example"
  • "Index"

List of Principal Symbols


Note: Additional subscripts s and r generally denote stator and rotor values of the quantity, respectively. The subscript 1 denotes the fundamental component. Boldface denotes a three-dimensional vector.

Page Number Symbol Meaning First Used A magnetic vector potential vector (Wb/m) 5 A area (m2) 21 B magnetic field or magnetic flux density vector (Wb/m2) 2 b1/3 breadth of slot 1/3 of the way from narrow portion (m) 83 Bc core flux density (Wb/m2) 97 Bg flux density in the air gap (Wb/m2) 53 Bg,ave average value of air gap flux density over one tooth and slot (Wb/m2) 87 Bgm flux density in the gap produced by the magnet (Wb/m2) 374 Bgm1 fundamental component of air gap flux density produced by the magnet (Wb/m2) 376 Bg1 peak fundamental air gap flux density (Wb/m2) 87 bo slot opening (m) 81 Btop, Bmid, Broot flux density at top, midpoint, and root of a tooth (Wb/m2) 87 C number of parallel circuits 73 Cf number of parallel field winding circuits 412 Cs number of parallel stator circuits 403 Ch thermal capacitance (J/°K) 353 Cir loss coefficient (W/m3) 233 cp specific heat (J/kg-°K) 307 cos fgap power factor as measured at the air gap 260 dcs, dcr depth of the stator, rotor core (m) 101 de equivalent depth of solid copper (m) dp penetration constant (m) 233 dm magnet depth (magnet thickness) (m) 373 Dis, Dir inner diameter of stator, rotor punching (m) 101 Dos, Dor outer diameter of stator, rotor punching (m) 101 dss, dsr depth of stator, rotor slot (m) 101 dt depth of tooth (m) 88 E electric field intensity vector (V/m) 9 eb induced voltage in a rotor bar (V) 172 F force vector (N) 1 magnetomotive force (MMF) (A-turn) 21 rotor core MMF drop (A-turn) 80 stator core MMF drop (A-turn) 80 fe stator applied frequency (Hz) 236 air gap MMF drop (A-turn) 80 peak fundamental component of stator MMF 79 MMF drop over the entire length of a tooth (A-turn) 89 stator, rotor tooth MMF drop (A-turn) 80 g mechanical gap (m) 30 ge equivalent gap including fringing and saturation (m) 119 h harmonic index 55 hk slot harmonics 62 H magnetic field intensity vector (A/m) 14 Htop, Hmid, Hroot magnetic field intensity at the top, midpoint, and bottom section of a tooth (A/m) 89 Ht(ave) average field intensity over entire length of a tooth (A/m) 89 I steady (DC) current (A) 1 ia, ib, ic instantaneous current in phases a, b, and c (A) 74 ib current in a rotor bar (A) 172 ie current in an end-ring segment (A) 172 Id, Iq direct and quadrature current components 403 Imr peak rotor bar current (A) 175 Ir,har equivalent current accounting for rotor space harmonics 178 Is peak AC stator current (A) 75 J current density vector (A/m2) 3 Jm volumetric polarization current (A/m2) 14 kc Carter factor 82 kch winding factor for harmonic h for concentrated windings 63 kcu copper space factor 274 kdh distribution factor for hth harmonic 60 kh winding factor for hth harmonic 72 khys Steinmetz coefficient 220 ki lamination space factor 87 Km surface polarization current 14 Kp factor to include the effect of slot leakage flux on saturation of the core 98 Kpf pole face factor 234 kph pitch factor for hth harmonic 55 ksr ratio of rotor to stator surface current density 265 ks, km, ksl slot factors 143 kd, kq, kf pole face factors 404, 406, 412 ksh skew factor for hth harmonic 72 K surface current density vector (A/m) 16 Ks, Kr stator, rotor surface current density (A/m) 265 Ks(rms) stator surface current density assuming rms amps (Arms/m) 262 Ks1 peak fundamental component of stator surface current density (A/m) 259 k?h slot opening factor for the hth harmonic 66 L inductance (H) 27 Lb inductance of one rotor bar (H) 172 Lb(har) harmonic leakage inductance of the rotor per phase (H) 180 Lbe equivalent bar inductance including the end-ring inductance (H) 175 lcs,...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

120,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok