Atomic Layer Processing

Semiconductor Dry Etching Technology
 
 
Wiley-VCH (Verlag)
  • erschienen am 21. April 2021
  • |
  • XIV, 284 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-3-527-82420-5 (ISBN)
 
This practical guide, written by an author actively involved in corporate R&D, provides in-depth information on etching technologies that are used in the semiconductor industry, helping engineers to select the right technologies for their task and to design etching processes.
weitere Ausgaben werden ermittelt
Thorsten Lill is a Vice President for Emerging Etch Technologies and Systems at Lam Research, the market leader in etching tools for the semiconductor industry. He has been working in the field of plasma, radical, thermal, ion beam and plasma etching since 1995. He has a Ph.D. in Physics from the Albert-Ludwigs-University in Freiburg, Germany and was a post doc at the Argonne National Laboratory. He has a track record in developing commercially successful etching equipment for the semiconductor industry. He published 85 articles and 66 patents in the field. Thorsten Lill holds a certificate in Entrepreneurship and Innovation from Stanford University.
1. INTRODUCTION

2. FUNDAMENTALS
2.1. Important performance metrics of etching processes
2.2. Physisorption and Chemisorption
2.3. Desorption
2.4. Surface Reactions
2.5. Sputtering
2.6. Implantation
2.7. Diffusion
2.8. Transport phenomena in 3D features
2.8.1. Neutral transport
2.8.2. Ion transport
2.8.3. Transport of reaction products
2.9. Classification of etching technologies

3. THERMAL ETCHING
3.1. Mechanism and performance metrics of Thermal Etching
3.2. Applications examples

4. THERMAL ISOTROPIC ALE
4.1. Mechanism of Thermal Isotropic ALE
4.1.1. Chelation / Condensation ALE
4.1.2. Ligand Exchange ALE
4.1.3. Conversion ALE
4.1.4. Oxidation / Fluorination ALE
4.2. Performance metrics of Thermal Isotropic ALE
4.3. Plasma-assisted Isotropic ALE
4.4. Applications examples
4.4.1. Area-selective deposition
4.4.2. Formation of lateral devices

5. RADICAL ETCHING
5.1. Mechanism of Radical Etching
5.2. Performance metrics
5.3. Applications examples

6. DIRECTIONAL ALE
6.1. Mechanism of Directional ALE
6.1.1. ALE with directional modification step
6.1.2. ALE with directional removal step and modification by chemisorption and diffusion
6.1.3. ALE with directional removal step and modification by reactive layer deposition
6.2. Performance metrics
6.3. Applications examples

7. REACTIVE ION ETCHING
7.1. Reactive Ion Etching Mechanisms
7.1.1. Simultaneous species fluxes
7.1.2. Chemical sputtering
7.1.3. Mixed layer formation
7.1.4. Role of etching products
7.2. Performance metrics
7.3. Application examples
7.3.1. Patterning
7.3.2. Logic Devices
7.3.3. DRAM and 3D NAND memory
7.3.4. Emerging memories

8. ION BEAM ETCHING
8.1. Mechanism and performance metrics of Ion Beam Etching
8.2. Applications examples

9. ETCHING SPECIES GENERATION
9.1. Introduction of low temperature plasmas
9.2. Capacitively coupled plasmas
9.3. Inductively coupled plasmas
9.4. Ion energy distribution modulation
9.5. Plasma-pulsing
9.6. Grid sources

10. EMERGING ETCHING TECHNOLOGIES
10.1. Electron assisted chemical etching
10.2. Photon assisted chemical etching

List of Abbreviations


Symbols


A
surface area and parameter in DG model
AR
aspect ratio
B
parameter in DG model
c
concentration
C
capacitance
CD
critical dimension
D
diffusion coefficient
d
depth, thickness
DC
direct current
dc
duty cycle
E
energy and Young's modulus
electric field
EPC
etch per cycle
EPE
edge placement error
ER
etching rate
ERNU
etching rate non-uniformity
G°
standard Gibbs free energy
GPC
growth per cycle
magnetic field
H°
standard enthalpy
h
height
hG
gas phase transport coefficient
I
current
J
particle flux
K
transmission probability
k
constant, coefficient: for instance reaction rate or sputtering coefficient
M
atomic mass
N
number. For instance: number of molecules, number of adsorbed surface sites, etc.
n
density (for gases)
r
distance between atoms or radius
R
reaction rate
RIE
reactive ion etching
Rp,?Rp
projected range and straggle
S
etching synergy
S°
standard entropy
s
sticking coefficient
SR
sputtering rate
T
temperature
t
time
V
voltage or electric potential
v
velocity
VLJ
Lennard-Jones potential energy
w
width
X
reactance
Z
atomic number

Greek Symbols


?
angle with respect to surface normal
s
cross section
?
circular frequency
t
characteristic time
?
dielectric constant
?
difference
e
energy difference, for instance depth of potential energy well
a, ß
etch amount in step A and B of an ALE process
S
film stress
?FMott
Mott potential (eV)
G
sputtering yield
Ø
surface coverage
?
volume
?
wavelength

Subscripts


0
denotes initial value
a
activation
A
adsorption, adsorbate
b
bottom
B
bias
c
capacitive
ca
cathode
col
collision
D
desorption
DC
direct current
dense
dense features
diff
diffusion
diss
dissociation
e
electron
G
gas
i
ion
iso
isolated features
im
impact
in
incoming
iz
ionization
kin
kinetic
M
maximum
m
minimum
n
neutrals
ox
oxidation
p
plasma
RF
radiofrequency
S
surface
sol
solution
sh
sheath
sp
sputtering
sw
sidewall
t
top
th
threshold
out
outgoing
ox
oxide, oxidation
w
wall

Acronyms


AC
alternating current
AFM
atomic force microscopy
ALE
atomic layer etching
ALD
atomic layer deposition
AR
aspect ratio
ARDE
aspect ratio dependent etching
BARC
bottom antireflective coating
BCA
binary collision approximation
BEOL
back end of line
BPS
bounded plasma system
BPSG
boron phosphorous silicon glass
BST
barium strontium titanate: Ba1-xSrxTiO3
CAIBE
chemically assisted ion beam etching
CBRAM
conductive bridge random access memory
CCP
capacitively coupled plasma
CD
critical dimension
CDE
chemical downstream etching
CFSTR
continuous flow stirred tank reactor
CM
Cabrera-Mott oxidation model
CMOS
complementary metal-oxide-semiconductor MOSFET fabrication process
CMP
chemical mechanical polishing
CVD
chemical vapor deposition
DARC
dielectric antireflective coating
DC
direct current
DFT
density functional theory
DG
Deal-Grove oxidation model
DMAC
dimethyl aluminum chloride
DRAM
dynamic random access memory
ECP
electro copper plating
ECR
electron cyclotron resonance
ESC
electrostatic chuck
FEOL
front end of line
FeRAM
ferroelectric random access memory
FET
field effect transistor
FG
floating gate flash device
FinFET
fin field effect transistor
FTIR
Fourier transform infrared spectroscopy
GAA
gate-all-around (transistors)
GST
phase change material comprised of germanium, antimonium, and tellurium
HPEM
hybrid plasma equipment model
IAD
ion angular distribution
IBE
ion beam etching
ICP
inductively coupled plasma
IED
ion energy distribution
IIP
ion-ion plasma
ILD
inter-layer dielectric
LEIS
low energy ion spectroscopy
LELE
Litho-Etch-Litho-Etch multipatterning
LER
line edge roughness
LWR
line width roughness
LSS
Lindhard, Scharff, and Schiott theory
MD
molecular dynamics
MEMS
micro-electromechanical systems
MEOL
mid end of line
MMP
mixed Mode Pulsing
MRAM
magnetic random access memory
MOSFET
metal oxide semiconductor field effect transistor
NAND
logic gate with "false" output if all inputs are "true." This type of logic gates is used in flash memory devices. 3D NAND is an implementation of flash memory devices where the gates are stacked in the third dimension inside tall vertical channels
ONON
oxide-nitride-oxide-nitride 3D NAND
OPOP
oxide-polysilicon-oxide-polysilicon 3D NAND
OxRAM
metal oxide resistive random access memory
PIC
particle-in-cell plasma model
PVD
physical vapor deposition
PCM
phase change memory
PSD
power spectral density
PZT
lead zirconate titanate: Pb(ZrxTi1-x)O3
QCM
quartz crystal microbalance
ReRAM
resistive random access memory
RF
radio frequency
RG
replacement gate flash
RIBE
reactive ion beam etching
RIE
reactive ion etching
SADP
self-aligned double patterning
SAQP
self-aligned quadruple patterning
SCM
storage class memory
SE
spectroscopic ellipsometry
SEM
scanning electron microscopy
SIMS
secondary ion mass spectrometry
SIT
sidewall image transfer
SRIM
"stopping and range of ions in matter" program
SOS
spacer-on-spacer implementation of self-aligned quadruple patterning
STI
shallow trench isolation
TCP
transformer coupled plasma
TEM
transmission electron microscopy
TMA
trimethylaluminum
TPD
temperature programmed desorption
TRIM
"transport of ions in matter" program
TSV
though silicon via
TWB
...

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

115,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen