Computational Finance Using C and C#

Derivatives and Valuation
 
 
Elsevier Reference Monographs (Verlag)
  • 2. Auflage
  • |
  • erschienen am 21. Juli 2016
  • |
  • 388 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803576-4 (ISBN)
 

Computational Finance Using C and C#: Derivatives and Valuation, Second Edition provides derivatives pricing information for equity derivatives, interest rate derivatives, foreign exchange derivatives, and credit derivatives. By providing free access to code from a variety of computer languages, such as Visual Basic/Excel, C++, C, and C#, it gives readers stand-alone examples that they can explore before delving into creating their own applications. It is written for readers with backgrounds in basic calculus, linear algebra, and probability. Strong on mathematical theory, this second edition helps empower readers to solve their own problems.

*Features new programming problems, examples, and exercises for each chapter. *Includes freely-accessible source code in languages such as C, C++, VBA, C#, and Excel.. *Includes a new chapter on the history of finance which also covers the 2008 credit crisis and the use of mortgage backed securities, CDSs and CDOs. *Emphasizes mathematical theory.


  • Features new programming problems, examples, and exercises with solutions added to each chapter
  • Includes freely-accessible source code in languages such as C, C++, VBA, C#, Excel,
  • Includes a new chapter on the credit crisis of 2008
  • Emphasizes mathematical theory


George Levy currently works as a quantitative analyst at RWE, and has provided technical consultancy to numerous financial institutions, In addition he has also published articles on numerical modelling, mathematical finance and software engineering. He is the author of Computational Finance: Numerical Methods for Pricing Financial Derivatives. His interests include: Monte Carlo simulation, Microsoft technologies and derivative valuation.
  • Englisch
  • San Diego
  • 7,25 MB
978-0-12-803576-4 (9780128035764)
0128035765 (0128035765)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Computational Finance Using C and C#
  • Copyright
  • Table of Contents
  • Preface
  • 1 Overview of Financial Derivatives
  • 2 Introduction to Stochastic Processes
  • 2.1 Brownian Motion
  • 2.2 A Brownian Model of Asset Price Movements
  • 2.3 Ito's Formula (or Lemma)
  • 2.4 Girsanov's Theorem
  • 2.5 Ito's Lemma for Multi-Asset GBM
  • 2.6 Ito Product and Quotient Rules in Two Dimensions
  • 2.6.1 Ito Product Rule
  • 2.6.2 Ito Quotient Rule
  • 2.7 Ito Product in n Dimensions
  • 2.8 The Brownian Bridge
  • 2.9 Time Transformed Brownian Motion
  • 2.9.1 Scaled Brownian Motion
  • 2.9.2 Mean Reverting Process
  • 2.10 Ornstein Uhlenbeck Process
  • 2.11 The Ornstein Uhlenbeck Bridge
  • 2.12 Other Useful Results
  • 2.12.1 Fubini's Theorem
  • 2.12.2 Ito's Isometry
  • 2.12.3 Expectation of a Stochastic Integral
  • 2.13 Selected Exercises
  • 3 Generation of Random Variates
  • 3.1 Introduction
  • 3.2 Pseudo-Random and Quasi-Random Sequences
  • 3.3 Generation of Multivariate Distributions: Independent Variates
  • 3.3.1 Normal Distribution
  • 3.3.2 Lognormal Distribution
  • 3.3.3 Student's t-Distribution
  • 3.4 Generation of Multivariate Distributions: Correlated Variates
  • 3.4.1 Estimation of Correlation and Covariance
  • 3.4.2 Repairing Correlation and Covariance Matrices
  • 3.4.3 Normal Distribution
  • 3.4.4 Lognormal Distribution
  • 3.5 Selected Exercises
  • 4 European Options
  • 4.1 Introduction
  • 4.2 Pricing Derivatives using A Martingale Measure
  • 4.3 Put Call Parity
  • 4.3.1 Discrete Dividends
  • 4.3.2 Continuous Dividends
  • 4.4 Vanilla Options and the Black21Scholes Model
  • 4.4.1 The Option Pricing Partial Differential Equation
  • 4.4.2 The Multi-asset Option Pricing Partial Differential Equation
  • 4.4.3 The Black--Scholes Formula
  • 4.4.4 Historical and Implied Volatility
  • 4.4.5 Pricing Options with Microsoft Excel
  • 4.5 Barrier Options
  • 4.5.1 Introduction
  • 4.5.2 Analytic Pricing of Down and Out Call Options
  • 4.5.3 Analytic Pricing of Up and Out Call Options
  • 4.5.4 Monte Carlo Pricing of Down and Out Options
  • 4.6 Selected Exercises
  • 5 Single Asset American Options
  • 5.1 Introduction
  • 5.2 Approximations for Vanilla American Options
  • 5.2.1 American Call Options with Cash Dividends
  • 5.2.2 The Macmillan, Barone-Adesi, and Whaley Method
  • 5.3 Lattice Methods for Vanilla Options
  • 5.3.1 Binomial Lattice
  • 5.3.2 Constructing and using the Binomial Lattice
  • 5.3.3 Binomial Lattice with a Control Variate
  • 5.3.4 The Binomial Lattice with BBS and BBSR
  • 5.4 Grid Methods for Vanilla Options
  • 5.4.1 Introduction
  • 5.4.2 Uniform Grids
  • 5.4.3 Nonuniform Grids
  • 5.4.4 The Log Transformation and Uniform Grids
  • 5.4.5 The Log Transformation and Nonuniform Grids
  • 5.4.6 The Double Knockout Call Option
  • 5.5 Pricing American Options using a Stochastic Lattice
  • 5.6 Selected Exercises
  • 6 Multi-asset Options
  • 6.1 Introduction
  • 6.2 The Multi-asset Black21Scholes Equation
  • 6.3 Multidimensional Monte Carlo Methods
  • 6.4 Introduction to Multidimensional Lattice Methods
  • 6.5 Two-asset Options
  • 6.5.1 European Exchange Options
  • 6.5.2 European Options on the Maximum or Minimum
  • 6.5.3 American Options
  • 6.6 Three-asset Options
  • 6.7 Four-asset Options
  • 6.8 Selected Exercises
  • 7 Other Financial Derivatives
  • 7.1 Introduction
  • 7.2 Interest Rate Derivatives
  • 7.2.1 Forward Rate Agreement
  • 7.2.2 Interest Rate Swap
  • 7.2.3 Timing Adjustment
  • 7.2.4 Interest Rate Quantos
  • 7.3 Foreign Exchange Derivatives
  • 7.3.1 FX Forward
  • 7.3.2 European FX Option
  • 7.4 Credit Derivatives
  • 7.4.1 Defaultable Bond
  • 7.4.2 Credit Default Swap
  • 7.4.3 Total Return Swap
  • 7.5 Equity Derivatives
  • 7.5.1 TRS
  • 7.5.2 Equity Quantos
  • 7.6 Selected Exercises
  • 8 C# Portfolio Pricing Application
  • 8.1 Introduction
  • 8.2 Storing and Retrieving the Market Data
  • 8.3 Equity Deal Classes
  • 8.3.1 Single Equity Option
  • 8.3.2 Option on Two Equities
  • 8.3.3 Generic Equity Basket Option
  • 8.3.4 Equity Barrier Option
  • 8.4 FX Deal Classes
  • 8.4.1 FX Forward
  • 8.4.2 Single FX Option
  • 8.4.3 FX Barrier Option
  • 8.5 Selected Exercises
  • 9 A Brief History of Finance
  • 9.1 Introduction
  • 9.2 Early History
  • 9.2.1 The Sumerians
  • 9.2.2 Biblical Times
  • 9.2.3 The Greeks
  • 9.2.4 Medieval Europe
  • 9.3 Early Stock Exchanges
  • 9.3.1 The Anwterp Exchange
  • 9.3.2 Amsterdam Stock Exchange
  • 9.3.3 Other Early Financial Centres
  • 9.4 Tulip Mania
  • 9.5 Early Use of Derivatives in the USA
  • 9.6 Securitisation and Structured Products
  • 9.7 Collateralised Debt Obligations
  • 9.8 The 2008 Financial Crisis
  • 9.8.1 The Collapse of AIG
  • A The Greeks for Vanilla European Options
  • A.1 Introduction
  • A.2 Gamma
  • A.3 Delta
  • A.4 Theta
  • A.5 Rho
  • A.6 Vega
  • B Barrier Option Integrals
  • B.1 The Down and Out Call
  • B.2 The Up and Out Call
  • C Standard Statistical Results
  • C.1 The Law of Large Numbers
  • C.2 The Central Limit Theorem
  • C.3 The Variance and Covariance of Random Variables
  • C.3.1 Variance
  • C.3.2 Covariance
  • C.3.3 Covariance Matrix
  • C.4 Conditional Mean and Covariance of Normal Distributions
  • C.5 Moment Generating Functions
  • D Statistical Distribution Functions
  • D.1 The Normal (Gaussian) Distribution
  • D.2 The Lognormal Distribution
  • D.3 The Student's t Distribution
  • D.4 The General Error Distribution
  • D.4.1 Value of for Variance hi
  • D.4.2 The Kurtosis
  • D.4.3 The Distribution for Shape Parameter, a
  • E Mathematical Reference
  • E.1 Standard Integrals
  • E.2 Gamma Function
  • E.3 The Cumulative Normal Distribution Function
  • E.4 Arithmetic and Geometric Progressions
  • F Black21Scholes Finite-Difference Schemes
  • F.1 The General Case
  • F.2 The Log Transformation and a Uniform Grid
  • G The Brownian Bridge: Alternative Derivation
  • H Brownian Motion: More Results
  • H.1 Some Results Concerning Brownian Motion
  • H.2 Proof of Equation (H.1.2)
  • H.3 Proof of Equation (H.1.4)
  • H.4 Proof of Equation (H.1.5)
  • H.5 Proof of Equation (H.1.6)
  • H.6 Proof of Equation (H.1.7)
  • H.7 Proof of Equation (H.1.8)
  • H.8 Proof of Equation (H.1.9)
  • H.9 Proof of Equation (H.1.10)
  • I Feynman21Kac Formula
  • I.1 Some Results
  • Glossary
  • Bibliography
  • Further Reading
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

85,62 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok