Translating Regenerative Medicine to the Clinic

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 18. November 2015
  • |
  • 354 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-800552-1 (ISBN)
 

Translating Regenerative Medicine to the Clinic reviews the current methodological tools and experimental approaches used by leading translational researchers, discussing the uses of regenerative medicine for different disease treatment areas, including cardiovascular disease, muscle regeneration, and regeneration of the bone and skin.

Pedagogically, the book concentrates on the latest knowledge, laboratory techniques, and experimental approaches used by translational research leaders in this field. It promotes cross-disciplinary communication between the sub-specialties of medicine, but remains unified in theme by emphasizing recent innovations, critical barriers to progress, the new tools that are being used to overcome them, and specific areas of research that require additional study to advance the field as a whole.

Volumes in the series include Translating Gene Therapy to the Clinic, Translating Regenerative Medicine to the Clinic, Translating MicroRNAs to the Clinic, Translating Biomarkers to the Clinic, and Translating Epigenetics to the Clinic.


  • Encompasses the latest innovations and tools being used to develop regenerative medicine in the lab and clinic
  • Covers the latest knowledge, laboratory techniques, and experimental approaches used by translational research leaders in this field
  • Contains extensive pedagogical updates aiming to improve the education of translational researchers in this field
  • Provides a transdisciplinary approach that supports cross-fertilization between different sub-specialties of medicine
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 8,88 MB
978-0-12-800552-1 (9780128005521)
0128005521 (0128005521)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Translating Regenerative Medicine to the Clinic
  • Copyright
  • Contents
  • Contributors
  • I - Introduction
  • 1 - Regenerative Medicine: The Hurdles and Hopes
  • Key Concepts
  • 1. INTRODUCTION
  • 2. ON THE ORIGINS OF REGENERATIVE MEDICINE
  • 3. FROM CELLS AND SCAFFOLDS TO TISSUES AND ORGANS
  • 4. BIOMATERIALS, TISSUE AND ORGAN BIOENGINEERING
  • 5. GENE THERAPY
  • 6. STEM CELL THERAPIES
  • 7. FUTURE DIRECTIONS
  • REFERENCES
  • II - Biomaterials and Tissue/Organ Bioengineering
  • 2 - Extracellular Matrix as an Inductive Scaffold for Functional Tissue Reconstruction
  • Key Concepts
  • 1. INTRODUCTION
  • 2. ECM AS A SCAFFOLD FOR REGENERATIVE MEDICINE
  • 2.1 The ECM as a Mechanical Substrate
  • 2.2 ECM Composition
  • 2.3 Dynamic Reciprocity
  • 2.4 Bioactive Degradation Products
  • 2.5 ECM as an Instructive Niche for Stem Cells
  • 3. DECELLULARIZATION AND FABRICATION METHODS
  • 4. TRANSLATIONAL APPLICATIONS OF ECM IN REGENERATIVE MEDICINE
  • 4.1 Esophageal Disease
  • 4.2 Volumetric Muscle Loss
  • 4.3 Temporomandibular Joint Meniscectomy
  • 5. MECHANISMS OF CONSTRUCTIVE REMODELING
  • 5.1 Mechanical Forces
  • 5.2 Modulation of the Host Response
  • 5.3 ECM Scaffold Degradation
  • 5.4 Undesirable Responses to ECM Scaffold Materials
  • 6. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 3 - Whole-Organ Bioengineering-Current Tales of Modern Alchemy
  • Key Concepts
  • 1. INTRODUCTION
  • 2. CURRENT STATUS OF ORGAN TRANSPLANTATION
  • 3. CURRENT STATUS ON ORGAN BIOENGINEERING
  • 3.1 Liver
  • 3.2 Intestine
  • 3.3 Kidney
  • 3.4 Heart
  • 3.5 Pancreas
  • 3.6 Lungs
  • 4. CURRENT APPLICATIONS FOR BIOENGINEERED ORGANS
  • 5. CURRENT LIMITATIONS
  • 5.1 Cell Sources and Expansion
  • 5.2 Assembly of Patent Vascular Networks
  • 5.3 Enabling Bioreactor Technologies
  • 5.4 Regulatory Challenges, Scaling Up, and Other Issues
  • 6. CONCLUSIONS
  • REFERENCES
  • 4 - Regenerative Implants for Cardiovascular Tissue Engineering
  • 1. INTRODUCTION
  • 1.1 The Path to a Regenerative Approach
  • 1.2 Brief Historical Overview of Vascular, Heart Valve, and Heart Implants
  • 1.2.1 Vascular Implants
  • 1.2.2 Heart Valve
  • 1.2.3 Whole Heart
  • 2. TYPES OF REGENERATIVE IMPLANTS-THE CONTINUITY BRIDGE
  • 2.1 Synthetic
  • 2.1.1 Degradable Synthetic Polymers
  • 2.1.2 Fabrication Methods
  • 2.2 Biologic
  • 2.2.1 ECM Gels
  • 2.2.2 Decellularized Scaffolds
  • 2.2.3 Hybrid
  • 3. FUNCTION OF IMPLANTS
  • 3.1 Implants as a Cell Delivery Vehicle Grown In Vitro
  • 3.1.1 Endothelial Progenitor Cells and MSCs
  • 3.1.2 Embryonic and Inducible Stem Cells
  • 3.1.3 BM Cells
  • 3.1.4 Cell Seeding Techniques
  • 3.2 Implants as an In Situ "Cell-Free" Tissue Forming Device
  • 3.3 Implants as a Drug Delivery Vehicle
  • 4. CLINICAL APPLICATIONS IN CARDIOVASCULAR REPAIR
  • 4.1 Vascular
  • 4.1.1 Vascular Patch
  • 4.1.2 Vascular Grafts
  • 4.2 Heart Valve
  • 4.3 Heart
  • 5. CONCLUSION
  • ACKNOWLEDGMENT
  • REFERENCES
  • 5 - Tissue Engineering and Regenerative Medicine: Gastrointestinal Application
  • Key Concepts
  • 1. THE GASTROINTESTINAL TRACT: OVERVIEW
  • 2. NEURODEGENERATIVE DISEASES OF THE GI TRACT
  • 3. CELL SOURCE IN REGENERATING THE NEUROMUSCULATURE OF THE GI TRACT
  • 4. SCAFFOLDS AS SUPPORT FOR NEUROMUSCULATURE REGENERATION
  • 4.1 Natural Materials
  • 4.2 Synthetic Materials
  • 5. TISSUE ENGINEERING OF DIFFERENT PARTS OF THE GI TRACT: CURRENT CONCEPTS
  • 5.1 Esophagus
  • 5.2 Stomach
  • 5.3 Small Intestine
  • 5.4 Large Intestine
  • 6. CONCLUSION
  • ACKNOWLEDGMENT
  • REFERENCES
  • 6 - Injury and Repair of Tendon, Ligament, and Meniscus
  • Key Concepts
  • 1. INTRODUCTION
  • 2. PREVALENT INJURIES OF TENDON, LIGAMENT, AND MENISCUS
  • 2.1 Anatomy of the Knee
  • 2.2 Tendon
  • 2.3 Development of Tendon-Bone Junction
  • 2.4 Ligament
  • 2.5 Meniscus
  • 3. TENDON, LIGAMENT, AND MENISCUS INJURIES AND JOINT FUNCTION
  • 4. CURRENT CLINICAL INTERVENTIONS
  • 4.1 Tendon and Ligament
  • 4.2 Menisci
  • 5. TISSUE ENGINEERING AND REGENERATIVE THERAPEUTIC APPROACHES FOR INJURIES OF TENDON, LIGAMENT, AND MENISCUS
  • 5.1 Cells
  • 5.2 Bioactive Factors
  • 5.3 Scaffolds
  • 5.4 Combination
  • 6. CONCLUSIONS AND FUTURE DIRECTIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 7 - Cartilage and Bone Regeneration-How Close Are We to Bedside?
  • 1. INTRODUCTION
  • 2. CONCEPTS AND TREATMENT STRATEGIES
  • 2.1 Bone
  • 2.2 Cartilage
  • 3. BIOMATERIALS FOR BONE AND CARTILAGE REGENERATION
  • 3.1 Polymers
  • 3.2 Bioactive Inorganic Materials
  • 3.3 Composites
  • 4. BONE AND CARTILAGE TISSUE ENGINEERING
  • 4.1 Bone Tissue Engineering
  • 4.2 Cartilage Tissue Engineering
  • 5. CLINICAL TRIALS
  • 6. COMMERCIAL PRODUCTS
  • 7. CONCLUSIONS AND FUTURE DIRECTIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 8 - Current Applications for Bioengineered Skin
  • Key Concepts
  • 1. INTRODUCTION
  • 1.1 The Skin
  • 1.1.1 Epidermis
  • 1.1.2 Dermis
  • 2. SKIN REGENERATIVE MEDICINE
  • 2.1 Cell Source
  • 2.1.1 Epidermal Stem Cells
  • 2.1.2 Human Embryonic Stem Cells and Induced Pluripotent Stem Cell Derivatives
  • 2.1.3 Mesenchymal Stem Cells
  • 2.1.4 Miscellaneous Cells
  • 2.2 Extracellular Matrix: Scaffolds
  • 2.3 Growth Factors and Their Delivery Systems
  • 3. BIOENGINEERED SKIN SYSTEMS
  • 3.1 Clinical Applications of Bioengineered Skin
  • 3.1.1 Permanent Skin Replacement
  • 3.1.2 Transient Skin Replacement
  • 3.1.3 Skin Bioengineering for EB
  • 3.2 Preclinical Studies: The Skin-Humanized Mouse Model
  • 4. CHALLENGES AND FUTURE DIRECTIONS
  • 5. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 9 - Urologic Tissue Engineering and Regeneration
  • Key Concepts
  • 1. INTRODUCTION
  • 2. CELLS FOR IMPLANTATION
  • 2.1 Cell Expansion
  • 2.2 Multipotentiality of MSCs
  • 2.3 Paracrine Effects
  • 2.4 Immunoregulatory Properties
  • 3. BIODEGRADABLE BIOMATERIALS
  • 3.1 Synthetic Scaffolds
  • 3.2 Collagen Matrix
  • 3.3 Hydrogels and Nanosphere Beads
  • 4. APPLICATIONS IN URINARY TRACT SYSTEM
  • 4.1 Kidney Regeneration
  • 4.1.1 Incidence
  • 4.1.2 Current Treatments
  • 4.1.3 Cell Therapy
  • 4.2 Ureter
  • 4.2.1 Incidence
  • 4.2.2 Current Treatment
  • 4.2.3 Cell-Seeded Tissue Engineering
  • 4.3 Bladder
  • 4.3.1 Incidence
  • 4.3.2 Current Treatment
  • 4.3.3 Cell-Seeded Tissue Engineering
  • 4.4 Urethra
  • 4.4.1 Incidence
  • 4.4.2 Current Treatments
  • 4.4.3 Cell-Seeded Tissue Engineering for Urethral Reconstruction
  • 4.5 Urethral Sphincter
  • 4.5.1 Incidence of Stress Urinary Incontinence
  • 4.5.2 Current Treatments
  • 4.5.3 Cell Therapy
  • 4.6 Erectile Dysfunction
  • 4.6.1 Incidence
  • 4.6.2 Current Treatment
  • 4.6.3 Cell Therapy
  • 5. FUTURE DIRECTIONS
  • 5.1 Efficient Revascularization
  • 5.2 Innervation
  • 5.3 Antifibrotic Effects
  • 5.4 Optimal Biomaterials
  • 6. CONCLUSION
  • REFERENCES
  • 10 - Regenerative Medicine and Tissue Engineering in Reproductive Medicine: Future Clinical Applications in Human Infertility
  • Key Concepts
  • 1. INTRODUCTION
  • 2. CELL THERAPY APPROACHES/STEM CELL TECHNOLOGY IN REPRODUCTIVE MEDICINE
  • 2.1 The Female Side: Endometrial and Ovarian Stem Cells
  • 2.1.1 The Regenerative Capacity of Human Endometrium
  • 2.1.1.1 Autologous Sources of Endometrial ASCs
  • 2.1.1.2 Exogenous Sources of Endometrial ASCs
  • 2.1.2 Stem Cells in the Ovaries of Female Mammals: Fallacy or Hidden Truth?
  • 2.2 The Male Side: Spermatogonial Stem Cells
  • 2.3 In Vitro Derivation of Gametes for the Study of Human Germ Line Development
  • 3. TISSUE ENGINEERING IN REPRODUCTIVE MEDICINE
  • 3.1 Regenerating the Uterus
  • 3.1.1 Cell Sheet Engineering for Endometrial Reconstruction
  • 3.1.2 Vaginal Reconstruction from 3D Scaffolds
  • 3.1.3 Customized Uterus
  • 3.2 In Vitro Spermatogenesis and Tissue Engraftment
  • 4. CONCLUSIONS AND FUTURE DIRECTIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • III - Gene Therapy and Molecular Medicine
  • 11 - Viral and Nonviral Vectors for In Vivo and Ex Vivo Gene Therapies
  • 1. VIRAL VECTORS
  • 1.1 Nonintegrative Viral Vectors
  • 1.1.1 Adenovirus
  • 1.1.1.1 Generalities
  • 1.1.1.2 Ad as Vectors-Genetic Modifications
  • 1.1.1.3 Strategies for the Targeting of Adenoviral Vectors
  • 1.1.2 Herpes Simplex Virus
  • 1.1.2.1 Generalities
  • 1.1.2.2 HSV Vectors
  • 1.1.2.3 Modifications and Targeting
  • 1.1.3 Vaccinia Virus
  • 1.1.3.1 Generalities
  • 1.1.3.2 Vaccinia Vectors and Genomic Modifications
  • 1.2 Integrative Viral Vectors
  • 1.2.1 Retrovirus
  • 1.2.1.1 Introduction
  • 1.2.1.2 Retroviral Vectors
  • 1.2.1.3 Modifications
  • 1.2.2 Lentivirus
  • 1.2.2.1 Introduction
  • 1.2.2.2 Lentiviral Vectors
  • 1.2.2.3 Modifications and Targeting
  • 1.2.3 Adeno-Associated Viruses
  • 1.2.3.1 Introduction
  • 1.2.3.2 Adeno-Associated Viral Vectors and Genome Modifications
  • 2. NONVIRAL VECTORS FOR GENE THERAPY
  • 2.1 Organic Vectors
  • 2.1.1 Lipid-Based Vectors
  • 2.1.1.1 Structure of Cationic Lipids
  • 2.1.2 Polymer-Based Vectors
  • 2.1.2.1 Poly(l-lysine)
  • 2.1.2.2 Polyethylenimine
  • 2.1.2.3 Carbohydrate-Based Polymers
  • 2.1.2.4 Dendrimers
  • 2.1.2.5 Polymeric Hydrogels
  • 2.2 Inorganic Vectors
  • 2.2.1 Magnetic Nanoparticles
  • 2.2.1.1 Iron Oxide Nanoparticles
  • 2.2.2 Gold Nanoparticles
  • 2.2.3 Silica Nanoparticles
  • 2.2.4 Carbon Nanotubes
  • 2.2.5 Quantum Dots
  • 3. EXOSOMES AS BIOLOGICAL VEHICLES
  • 3.1 Vehicles for RNA Transfer
  • 3.2 As Vehicles for Protein Transfer
  • 3.3 Vehicles for DNA Transfer
  • 4. CLINICAL APPLICATIONS
  • 4.1 Clinical Trials Involving Viral Vectors
  • 4.1.1 Adenovirus
  • 4.1.1.1 Oncology
  • 4.1.1.2 Genetic Diseases
  • 4.1.1.3 Cardiovascular
  • 4.1.2 Herpes Simplex Virus
  • 4.1.2.1 Neuropathy and Pain
  • 4.1.2.2 Oncology
  • 4.1.3 Vaccinia Virus
  • 4.1.3.1 Oncology
  • 4.1.4 Retrovirus
  • 4.1.4.1 Oncology
  • 4.1.4.2 Genetic Diseases
  • 4.1.5 Lentivirus
  • 4.1.5.1 Oncology
  • 4.1.5.2 Neuropathies
  • 4.1.6 Adeno-Associated Virus
  • 4.1.6.1 Oncology
  • 4.1.6.2 Genetic Diseases
  • 4.2 Clinical Trials Involving Nanoparticles
  • 4.3 Clinical Trials Involving Exosomes
  • 5. CONCLUSIONS AND FUTURE DIRECTIONS
  • REFERENCES
  • 12 - Treating Hemophilia by Gene Therapy
  • Key Concepts
  • 1. RATIONALE FOR GENE THERAPY
  • 2. HEMOPHILIA: PATHOPHYSIOLOGY, HISTORY, AND CLINICAL MANAGEMENT
  • 2.1 Hemophilia: An Archetype Genetic Disease for Correction by Gene Therapy
  • 3. PRECLINICAL TESTING OF GENE THERAPY FOR HEMOPHILIA
  • 3.1 Adenoviral Vectors
  • 3.2 Retroviral Vectors
  • 3.3 Adeno-Associated Virus Vectors
  • 3.4 Hemophilia A in Sheep
  • 4. USING CELLS AS VEHICLES TO DELIVER FACTORS VIII AND IX TO TREAT HEMOPHILIA
  • 4.1 Fibroblasts
  • 4.2 Hematopoietic Stem Cells
  • 4.3 Mesenchymal Stem Cells/Marrow Stromal Cells
  • 5. HUMAN CLINICAL GENE THERAPY TRIALS FOR HEMOPHILIA
  • 6. FUTURE DIRECTIONS IN GENE THERAPY FOR HEMOPHILIA
  • 7. CONCLUSIONS
  • REFERENCES
  • 13 - Gene Therapy in Monogenic Congenital Myopathies
  • Key Concepts
  • 1. INTRODUCTION TO MONOGENIC CONGENITAL MYOPATHIES
  • 2. GENE THERAPY
  • 2.1 What Is Gene Therapy
  • 2.2 What Will Be Administered
  • 2.3 Advantages of Gene Therapy in Treating Congenital Myopathies
  • 2.4 Gene Therapy Clinical Trails for Congenital Myopathies
  • 3. VECTOR TOOLBOX
  • 4. ROUTES OF DELIVERY
  • 4.1 Direct Injection
  • 4.2 Locoregional Perfusion
  • 4.3 Systemic Delivery
  • 5. PRECLINICAL DISEASE MODEL SYSTEMS
  • 5.1 Cell Culture Models
  • 5.2 Animal Models
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 14 - Microvesicles as Mediators of Tissue Regeneration
  • Key Concepts
  • 1. INTRODUCTION
  • 2. FUNCTIONS OF MVS
  • 3. MESENCHYMAL STEM CELLS AND REGENERATIVE MEDICINE
  • 4. MSC-MVS IN KIDNEY REGENERATION
  • 5. MSC-MVS IN CARDIAC REGENERATION
  • 6. MVS IN REGENERATION OF OTHER TISSUES
  • 7. MVS AND EMBRYONIC STEM CELLS
  • 8. FUTURE PERSPECTIVES
  • ACKNOWLEDGMENT
  • REFERENCES
  • IV - Cell Therapies and Other Applications
  • 15 - Nature or Nurture: Innate versus Cultured Mesenchymal Stem Cells for Tissue Regeneration
  • Key Concepts
  • 1. INTRODUCTION
  • 2. THE CONVENTIONAL CULTURED MSC: A BRIEF HISTORIC PERSPECTIVE
  • 3. MEDICAL USE OF MSCS
  • 3.1 Diseases of the Immune System
  • 3.1.1 Graft-versus-Host Disease
  • 3.1.2 Crohn's Disease
  • 3.2 Nonimmune Diseases
  • 3.2.1 Myocardial Infarction
  • 3.2.2 Osteogenesis Imperfecta
  • 3.3 Regulatory Challenges Faced by MSC-Based Therapies
  • 4. THE ORIGINAL TISSUE RESIDENT MSC: A BETTER THERAPEUTIC ALTERNATIVE?
  • 4.1 Prospective Identification of Native MSCs
  • 4.2 PSCs and Cardiac Regeneration
  • 4.3 PSCs for Bone Repair and Regeneration
  • 4.3.1 Improved PSC-Mediated Bone Formation in a Rodent Intramuscular Model
  • 4.3.2 Improved PSC-Mediated Bone Formation in a Rodent Calvarial Defect Model
  • 4.3.3 Improved PSC-Mediated Bone Formation in a Rodent Spinal Fusion Model
  • 4.3.4 Robust Paracrine Effects of hPSCs
  • 5. PERSPECTIVES
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 16 - Adipose Tissue as a Plentiful Source of Stem Cells for Regenerative Medicine Therapies
  • Key Concepts
  • 1. Therapeutic Potential of Adipose-Derived Stem Cells
  • 2. LIPOHARVEST METHODS
  • 3. METHODS OF SVF ISOLATION: AUTOMATED VERSUS MANUAL
  • 4. FLOW CYTOMETRY ANALYSIS
  • 5. REGULATORY PROCESS
  • 6. CURRENT CLINICAL TRIALS AND GROWING POSSIBILITIES
  • 6.1 Delivery of ASCs to Areas of Injury
  • 6.2 ASCs in Tissue Engineering
  • 7. CONCLUDING REMARKS
  • REFERENCES
  • 17 - Developing "Smart" Point-of-Care Diagnostic Tools for "Next-Generation" Wound Care
  • Key Concepts
  • 1. INTRODUCTION
  • 2. PATHOGENESIS OF CHRONIC WOUNDS
  • 3. CHRONIC WOUND CARE
  • 3.1 Wound Bed Preparation and Assessment
  • 3.2 Current Modalities for Converting Chronic Wounds to Acute Wounds
  • 4. BIOMARKERS: MOLECULAR "BAR CODING" OF CHRONIC WOUNDS
  • 4.1 Molecular Diagnostics of Microbial Burden
  • 4.2 Inflammatory Mediators as Biomarkers: The "Omics" of Chronic Wound Fluid
  • 4.3 Proteases as Chronic Wound Diagnostics
  • 4.4 Metabolic Markers of Wound Chronicity
  • 4.5 Therapeutic Implications of Chronic Wound Profiling
  • 5. NOVEL DEVICES FOR WOUND ASSESSMENT
  • 5.1 Opportunities for Advanced Diagnostic and Therapeutic Modalities: Lessons from Synthetic Biology?
  • 5.2 Programmed Synthetic Systems as "Smart" Wound Dressings: Combined Diagnostics and Therapeutics
  • 6. SUMMARY AND FUTURE OUTLOOK
  • REFERENCES
  • 18 - Cell Therapy for Cardiac Regeneration
  • Key Concepts
  • 1. INTRODUCTION
  • 2. CONCEPTS AND STRATEGIES OF CARDIAC REGENERATION
  • 3. THE SEARCH FOR THE IDEAL CELL: EXTRACARDIAC SOURCES
  • 3.1 The Bone Marrow as Reservoir of Somatic Stem Cells
  • 3.2 BMCs: Clinical Trials
  • 3.3 Bone Marrow-Derived MSCs
  • 3.4 Clinical Trials Using MSCs
  • 4. HEART-RESIDENT STEM AND PROGENITOR CELLS
  • 4.1 Endogenous CSCs and Progenitor Cells as Source of Cardiac Cells
  • 4.2 Cardiac SP Cells
  • 4.3 c-Kit-Positive CSCs
  • 4.4 Cardiospheres
  • 4.5 Clinical Trials Using CSCs
  • 5. PLURIPOTENT STEM CELLS
  • 5.1 Human ESCs
  • 5.2 Induced Pluripotent Stem Cells
  • 6. DIRECT REPROGRAMMING OF NONMYOCYTES
  • 7. UNRESOLVED ISSUES AND FUTURE PERSPECTIVES
  • REFERENCES
  • Abbreviated References from Tables 1-3
  • 19 - Cord Blood Transplantation in Hematological and Metabolic Diseases
  • 1. UMBILICAL CB BANKING
  • 2. OVERVIEW OF BANKING TECHNOLOGY
  • 3. EARLY TRANSPLANT EXPERIENCE WITH UMBILICAL CBT
  • 4. UMBILICAL CBT IN PEDIATRICS
  • 5. UMBILICAL CBT IN ADULTS
  • 6. HSCT AS A TREATMENT FOR IMDS
  • 7. UMBILICAL CBT IN THE MUCOPOLYSACCHARIDOSES
  • 8. UMBILICAL CBT IN THE LEUKODYSTROPHIES
  • 9. INVESTIGATIONS IN THE TREATMENT OF ACQUIRED BRAIN INJURIES WITH UMBILICAL CB
  • 10. SUMMARY
  • REFERENCES
  • 20 - Mobilizing Endogenous Stem Cells for Retinal Repair
  • Key Concepts
  • 1. INTRODUCTION
  • 2. SOURCES OF ENDOGENOUS STEM/PROGENITOR CELLS
  • 3. NICHE SIGNALS AND STEM CELL POTENTIAL
  • 4. INTRACELLULAR SIGNALS AND TRANSCRIPTIONAL REGULATION
  • 5. EPIGENETIC REGULATION OF STEM CELL POTENTIAL
  • 6. FUNCTIONAL RESTORATION OF RETINAL NEURONS
  • 7. CONCLUSIONS AND FUTURE DIRECTIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • 21 - Experimental Cell Therapy for Liver Dysfunction
  • Key Concepts
  • 1. INTRODUCTION
  • 2. HUMAN HEPATOCYTES
  • 3. ALTERNATIVE CELL SOURCES
  • 4. MACHINE PERFUSION FOR LIVER PRESERVATION
  • 5. MONITORING CELL ENGRAFTMENT
  • 6. CONCLUSION
  • REFERENCES
  • 22 - Microfluidic-Based 3D Models of Renal Function for Clinically Oriented Research
  • Key Concepts
  • 1. INTRODUCTION
  • 2. CELL SOURCES FOR IN VITRO KIDNEY MODELS
  • 2.1 Primary Culture of Isolated Nephron Segments
  • 2.2 Immortalized Cell Lines of Renal Origin
  • 2.3 Differentiation of Progenitor Cells toward a Renal Phenotype
  • 3. MODELING RENAL TUBULES COMPLEX 3D INTERACTIONS
  • 3.1 Role of ECM in Renal Cell Differentiation and Function
  • 3.2 Two-Dimensional Renal Cell Culture on ECM-Coated Surfaces
  • 3.3 Three-Dimensional Renal Cell Culture in Hydrogel and Transwell Devices
  • 4. RENAL ORGANOTYPIC CULTURE IN MICROFLUIDIC DEVICES
  • 4.1 Justification for the Use of Microfluidic Devices in Renal Epithelial Cell Culture
  • 4.2 Design and Fabrication of Microfluidic Cell Culture Devices
  • 4.3 Experimentation with Renal Cells Cultured in Microfluidic Devices
  • 5. CURRENT LIMITATIONS AND FUTURE DIRECTIONS IN IN VITRO KIDNEY RESEARCH
  • ACKNOWLEDGMENT AND DISCLAIMER
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • X
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

110,61 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok