From Global to Local Statistical Shape Priors

Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes
 
 
Springer (Verlag)
  • erschienen am 14. März 2017
  • |
  • XXI, 259 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-53508-1 (ISBN)
 
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
1st ed. 2017
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 50
  • |
  • 64 farbige Abbildungen, 20 s/w Abbildungen, 50 farbige Tabellen
  • |
  • 20 schwarz-weiße und 64 farbige Abbildungen, 50 farbige Tabellen, Bibliographie
  • 14,20 MB
978-3-319-53508-1 (9783319535081)
10.1007/978-3-319-53508-1
weitere Ausgaben werden ermittelt
Carsten Last received his diploma degree in computer and communications systems engineering (with distinction) from TU Braunschweig, Germany, in 2009. During his studies he worked as a student assistant in the area of speech enhancement at the Institute for Communications Technology at TU Braunschweig. From 2009 to 2015 he was a research assistant and PhD student at the Institute for Robotics and Process Control at TU Braunschweig, from which he received his doctorate degree in computer science in 2016 (summa cum laude). His research focused mainly on the areas of medical image processing and computer vision. Since 2015, he is working as a research engineer at Volkswagen AG in the area of autonomous driving.
Basics.- Statistical Shape Models (SSMs).- A Locally Deformable Statistical Shape Model (LDSSM).- Evaluation of the Locally Deformable Statistical Shape Model.- Global-To-Local Shape Priors for Variational Level Set Methods.- Evaluation of the Global-To-Local Variational Formulation.- Conclusion and Outlook.

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

139,09 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen