Dynamic Damage and Fragmentation

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 3. Januar 2019
  • |
  • 462 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-57914-4 (ISBN)
 
Engineering structures may be subjected to extreme high-rate loading conditions, like those associated with natural disasters (earthquakes, tsunamis, rock falls, etc.) or those of anthropic origin (impacts, fluid-structure interactions, shock wave transmissions, etc.). Characterization and modeling of the mechanical behavior of materials under these environments is important in predicting the response of structures and improving designs. This book gathers contributions by eminent researchers in academia and government research laboratories on the latest advances in the understanding of the dynamic process of damage, cracking and fragmentation. It allows the reader to develop an understanding of the key features of the dynamic mechanical behavior of brittle (e.g. granular and cementitious), heterogeneous (e.g. energetic) and ductile (e.g. metallic) materials.
1. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 38,98 MB
978-1-119-57914-4 (9781119579144)
weitere Ausgaben werden ermittelt
David Edward Lambert is a member of the scientific and professional cadre of Senior Executives, and Chief Scientist of the Air Force Research Laboratory, Munitions Directorate, Eglin, USA.

Crystal L. Pasiliao is a Senior Research Scientist at the Air Force Research Laboratory, Munitions Directorate, Eglin, USA.

Benjamin Erzar is a Senior Research Scientist at the Commissariat a l'Energie Atomique, Gramat, France.

Benoit Revil-Baudard is a Research Scientist in the Department of Mechanical and Aerospace Engineering at the University of Florida, REEF, Shalimar, USA.

Oana Cazacu is Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida, REEF, Shalimar, USA.
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • 1. Some Issues Related to the Modeling of Dynamic Shear Localization-assisted Failure
  • 1.1. Introduction
  • 1.2. Preliminary/fundamental considerations
  • 1.2.1. Localization and discontinuity
  • 1.2.2. Isothermal versus adiabatic conditions
  • 1.2.3. Sources of softening
  • 1.2.4. ASB onset
  • 1.2.5. Scale postulate
  • 1.3. Small-scale postulate-based approaches
  • 1.3.1. Material of the band viewed as an extension of the solid material behavior before ASB onset
  • 1.3.2. Material of the band viewed as a fluid material
  • 1.3.3. ASB viewed as a damage mechanism
  • 1.3.4. Assessment
  • 1.4. Embedded band-based approaches (large-scale postulate)
  • 1.4.1. Variational approaches
  • 1.4.2. Enriched finite element kinematics
  • 1.4.3. Enriched constitutive model
  • 1.4.4. Discussion
  • 1.5. Conclusion
  • 1.6. Acknowledgments
  • 1.7. References
  • 2. Analysis of the Localization Process Prior to the Fragmentation of a Ring in Dynamic Expansion
  • 2.1. Introduction
  • 2.1.1. Fragmentation experiments
  • 2.1.2. Fragmentation theories
  • 2.2. An extension of a linear stability analysis developed in [MER 03]
  • 2.2.1. Position of the problem
  • 2.2.2. Classical linear stability analysis
  • 2.2.3. Evolution of the cross-section perturbation
  • 2.2.4. Analysis of the potential sites of necking
  • 2.3. Outcomes of the approach
  • 2.3.1. Effects of the loading velocity on neck spacing distribution
  • 2.3.2. Effects of an imposed dominant mode in the initial perturbation
  • 2.3.3. Comparison of the approach with numerical simulations
  • 2.4. Conclusion
  • 2.5. References
  • 3. Gradient Damage Models Coupled With Plasticity and Their Application to Dynamic Fragmentation
  • 3.1. Introduction
  • 3.2. Theoretical aspects
  • 3.2.1. Gradient damage models
  • 3.2.2. Damage coupled with plasticity
  • 3.2.3. Dynamic gradient damage
  • 3.3. Numerical implementation
  • 3.4. Applications
  • 3.4.1. 1D fracture
  • 3.4.2. Material behavior
  • 3.4.3. Dimensionless parameters
  • 3.4.4. 1D period bar
  • 3.4.5. Cylinder under internal pressure
  • 3.5. Conclusion
  • 3.6. References
  • 4. Plastic Deformation of Pure Polycrystalline Molybdenum
  • 4.1. Introduction
  • 4.2. Quasi-static and dynamic data on a pure polycrystalline Mo
  • 4.2.1. Analysis of the quasi-static uniaxial tension test results on smooth specimens
  • 4.2.2. Split Hopkinson pressure bar data
  • 4.2.3. Taylor cylinder impact data
  • 4.3. Constitutive model for polycrystalline Mo
  • 4.4. Predictions of the mechanical response
  • 4.4.1. FE predictions of the quasi-static uniaxial tensile response for notched specimens
  • 4.5. Conclusions
  • 4.6. References
  • 5. Some Advantages of Advanced Inverse Methods to Identify Viscoplastic and Damage Material Model Parameters
  • 5.1. Introduction
  • 5.2. Experimental devices for material characterization over a large range of strain rates
  • 5.3. Identification of elasto-viscoplastic and damage material parameters
  • 5.3.1. Direct approach for material parameter identification
  • 5.3.2. Inverse approaches for material parameter identification
  • 5.4. Conclusions
  • 5.5. Acknowledgments
  • 5.6. References
  • 6. Laser Shock Experiments to Investigate Fragmentation at Extreme Strain Rates
  • 6.1. Introduction
  • 6.2. Phenomenology of laser shock-induced fragmentation
  • 6.3. Spall fracture
  • 6.4. Microspall after shock-induced melting
  • 6.5. Microjetting from geometrical defects
  • 6.6. Conclusion
  • 6.7. References
  • 7. One-dimensional Models for Dynamic Fragmentation of Brittle Materials
  • 7.1. Introduction
  • 7.2. Methods
  • 7.3. Results
  • 7.3.1. Mono-phase materials
  • 7.3.2. Multi-phase materials
  • 7.4. Conclusions
  • 7.5. References
  • 8. Damage and Wave Propagationin Brittle Materials
  • 8.1. Introduction
  • 8.2. Short overview of damage models
  • 8.2.1. Effective elasticity of a cracked solid
  • 8.2.2. Damage evolution
  • 8.3. 1D wave propagation
  • 8.3.1. Problem statement
  • 8.3.2. A single family of micro-cracks
  • 8.3.3. Three families of micro-cracks
  • 8.4. Two-dimensional anti-plane wave propagation
  • 8.4.1. Anisotropic damage under isotropic loading
  • 8.4.2. Anisotropic loading of an initial isotropic damaged material
  • 8.5. Blast impact and damage evolution
  • 8.6. Conclusions and perspectives
  • 8.7. Acknowledgments
  • 8.8. References
  • 9. Discrete Element Analysis to Predict Penetration and Perforation of Concrete Targets Struck by Rigid Projectiles
  • 9.1. Introduction
  • 9.2. Discrete element model
  • 9.2.1. Definition of interactions
  • 9.2.2. Constitutive behavior of concrete: Discrete element model
  • 9.2.3. Linear elastic constitutive behavior
  • 9.2.4. Nonlinear constitutive behavior
  • 9.2.5. Strain rate dependency
  • 9.3. Simulation of impacts
  • 9.3.1. Impact experiments
  • 9.3.2. Modeling of impact experiments
  • 9.4. Conclusion
  • 9.5. References
  • 10. Bifurcation Micromechanicsin Granular Materials
  • 10.1. Introduction
  • 10.2. Application of the second-order work criterion at representative volume element scale
  • 10.3. From macro to micro analysis of instability
  • 10.3.1. Local second-order work and contact sliding
  • 10.3.2. Role of strong contact network in stable and unstable loading directions
  • 10.3.3. From contact sliding to mesoscale mechanisms
  • 10.3.4. Micromechanisms leading to bifurcation at the representative volume element scale
  • 10.4. Diffuse and localized failure in a unified framework
  • 10.4.1. Diffuse and localized failure pattern
  • 10.4.2. Common micromechanisms and microstructures
  • 10.5. Conclusion
  • 10.6. References
  • 11. Influence of Specimen Size on the Dynamic Response of Concrete
  • 11.1. Introduction
  • 11.2. Materials and specimens
  • 11.3. Experimental techniques
  • 11.3.1. Kolsky compression bar theory and set-up
  • 11.3.2. Pulse shaping technique
  • 11.4. Results and discussion
  • 11.4.1. Pulse shaper design for Kolsky compression bar systems
  • 11.4.2. Rate and specimen size effect on failure strength
  • 11.5. Conclusion
  • 11.6. Acknowledgments
  • 11.7. References
  • 12. Shockless Characterization ofCeramics Using High-Pulsed Power Technologies
  • 12.1. Introduction
  • 12.1.1. Presentation of the silicon carbide grades
  • 12.2. Principle of the GEPI generator
  • 12.3. Dynamic compression of ceramics
  • 12.3.1. Lagrangian analysis of velocity profiles
  • 12.3.2. Experimental results
  • 12.4. Dynamic tensile strength of ceramics
  • 12.4.1. Experimental methodology and data processing
  • 12.4.2. Characterization of two silicon carbide grades
  • 12.4.3. Post-mortem analyses of damaged samples
  • 12.5. Conclusions
  • 12.6. Acknowledgments
  • 12.7. References
  • 13. A Eulerian Level Set-based Framework for Reactive Meso-scale Analysis of Heterogeneous Energetic Materials
  • 13.1. Introduction
  • 13.2. Numerical framework
  • 13.2.1. Governing equations
  • 13.2.2. Constitutive model for HMX
  • 13.2.3. Reactive modeling of HMX
  • 13.2.4. Level set representation of embedded interface
  • 13.2.5. Image processing approach: Representing real geometries
  • 13.3. Results
  • 13.3.1. Grid refinement study
  • 13.3.2. Collapse behavior of voids present in the pressed HMX material
  • 13.3.3. Criticality conditions for Class III and Class V samples
  • 13.3.4. Meso-scale criticality conditions for pressed energetic
  • 13.4. Conclusions
  • 13.5. Acknowledgments
  • 13.6. References
  • 14. A Well-posed Hypoelastic Model Derived From a Hyperelastic One
  • 14.1. Introduction
  • 14.2. A general hyperelastic model formulation
  • 14.3. Evolution equation for the deviatoric part of the stress tensor: neo-Hookean solids
  • 14.3.1. Expression of tr(b) as a function of the invariants of S
  • 14.3.2. Hypoelastic formulation
  • 14.4. Conclusions
  • 14.5. Acknowledgments
  • 14.6. References
  • Appendix A: Case a = 0.5
  • List of Authors
  • Index
  • Other titles from iSTE in Civil Engineering and Geomechanics
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

126,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen