Radioactivity

Introduction and History, From the Quantum to Quarks
 
 
Elsevier (Verlag)
  • 2. Auflage
  • |
  • erschienen am 13. Mai 2016
  • |
  • 932 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-444-63496-2 (ISBN)
 

A recipient of the PROSE 2017 Honorable Mention in Chemistry & Physics, Radioactivity: Introduction and History, From the Quantum to Quarks, Second Edition provides a greatly expanded overview of radioactivity from natural and artificial sources on earth, radiation of cosmic origins, and an introduction to the atom and its nucleus. The book also includes historical accounts of the lives, works, and major achievements of many famous pioneers and Nobel Laureates from 1895 to the present.

These leaders in the field have contributed to our knowledge of the science of the atom, its nucleus, nuclear decay, and subatomic particles that are part of our current knowledge of the structure of matter, including the role of quarks, leptons, and the bosons (force carriers).

Users will find a completely revised and greatly expanded text that includes all new material that further describes the significant historical events on the topic dating from the 1950s to the present.

  • Provides a detailed account of nuclear radiation - its origin and properties, the atom, its nucleus, and subatomic particles including quarks, leptons, and force carriers (bosons)
  • Includes fascinating biographies of the pioneers in the field, including captivating anecdotes and insights
  • Presents meticulous accounts of experiments and calculations used by pioneers to confirm their findings


Michael F. L'Annunziata, Ph.D. appears with a detailed biography in the annual editions of Who's Who in the World from 1987 to 2016 and Who's Who in America from 2000 to 2016. He majored in chemistry with a BSc degree from St. Edward's University in 1965; and he was awarded MSc and PhD degrees from the University of Arizona, Tucson in 1967 and 1970, respectively, and an Honorary Teaching Degree from the Central University of Ecuador in 1978. His graduate thesis research in the 1960s, financed by the then U.S. Atomic Energy Commission directed by Nobel laureate Glenn T. Seaborg, dealt with the analysis of radioactive strontium-89 and strontium-90 in the environment and the remediation of soils contaminated with strontium-90 in the event of nuclear fallout. L'Annunziata was a member of the Board of Governors, International Science Programs at Uppsala University between 1988 and 1991. He was Head of Fellowships and Training at the International Atomic Energy Agency (IAEA) in Vienna, Austria from 1987-1991 and has served as IAEA Expert on peaceful applications of nuclear energy for development to over 50 countries of the world from 1976 to 2007. His main research interests have been focused on the development of chemical and instrumental methods for the detection and measurement of radioactive nuclides in the environment and the application of radioactive tracers in biological research. L'Annunziata was first to demonstrate in 1971 the separation of strontium-90 from its daughter nuclide yttrium-90 by electrophoresis as a potential method for strontium-90 analysis (J. Chem. Educ. 48, 700-703). He was the first to postulate in 1970 and 1975 the soil microbial epimerization of myo-inositol to other inositol isomers as a source of inositol phosphate isomers in soils (University of Arizona, Ph.D. dissertation, 1970 (http://dissexpress.umi.com/dxweb/search.html) and SSSA Journal 30(2), 377-379) and to demonstrate in 1977, with the use of radioactive carbon-14, the soil microbial epimerization of myo-inositol to D-chiro-inositol as a mechanism for the origin of the unique inositol phosphate isomers in soils (SSSA Journal 41(4), 733-736). Michael F. L'Annunziata was Honorary Professor at Zhejiang University in Hangzhou, China in 1992. He has authored several books among which his recent book entitled 'Radioactivity: Introduction and History' published by Elsevier was on the LibraryJournal's Best Sellers List in Physics..
  • Englisch
  • Atlanta
  • |
  • Niederlande
Elsevier Science
  • 42,78 MB
978-0-444-63496-2 (9780444634962)
0444634967 (0444634967)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Radioactivity: Introduction and History, From the Quantum to Quarks
  • About the Cover Illustration
  • Radioactivity: Introduction and History, From the Quantum to Quarks
  • Copyright
  • Dedication
  • Contents
  • About the Author
  • Foreword
  • Preface to the First Edition
  • Preface to the Second Edition
  • Acronyms, Abbreviations and Symbols
  • Introduction
  • 1 - Radioactivity and Our Well-Being
  • 1.1 HUMAN HEALTH
  • 1.1.1 X-Ray Diagnostic Radiography
  • 1.1.2 X-Ray Computed Tomography
  • 1.1.3 Single Photon Emission Computed Tomography
  • 1.1.4 Positron Emission Tomography
  • 1.1.5 Radiation Therapy
  • 1.1.5.a External Beam Radiation Therapy
  • 1.1.5.b Brachytherapy
  • 1.1.5.c Proton Beam and Heavy Ion Therapy
  • 1.1.5.d Boron Neutron Capture Therapy
  • 1.1.6 Radioactive Nanoparticles in Cancer Imaging and Therapy
  • 1.2 BIOLOGICAL RESEARCH
  • 1.3 FOOD AND AGRICULTURE
  • 1.3.1 Insect Pest Control
  • 1.3.2 Fertilizer and Water Use Efficiency
  • 1.3.2.a Fertilizer Use Efficiency
  • 1.3.2.b Soil Moisture Neutron Gauge
  • 1.3.2.c Cosmic Ray Soil Moisture Observing System
  • 1.3.2.d Isotopic Water Signatures
  • 1.3.3 Animal Health and Production
  • 1.3.4 Plant Breeding
  • 1.4 WATER RESOURCES
  • 1.5 MARINE RESOURCES
  • 1.5.1 Climate Change and Marine Acidification
  • 1.5.2 Ocean Water Transport and Circulation
  • 1.5.3 Harmful Algal Blooms in Marine Coastal Waters
  • 1.5.4 Other Isotope Applications in Marine Science
  • 1.6 RADIATION TECHNOLOGY
  • 1.6.1 Research Reactors and Accelerators
  • 1.6.2 Neutron Diffraction and Scattering
  • 1.6.3 Neutron Radiography
  • 1.6.4 Neutron Activation Analysis
  • 1.6.5 X-Ray Diffraction, Emission, and Fluorescence Analysis
  • 1.6.5.a X-Ray Diffraction/Crystallography
  • 1.6.5.b Proton-Induced X-Ray Emission (PIXE)
  • 1.6.5.c X-Ray Fluorescence
  • 1.6.6 Radiation Processing
  • 1.7 NUCLEAR POWER
  • 1.7.1 Nuclear Fission
  • 1.7.2 Desalination
  • 1.7.3 Nuclear Fusion
  • 1.7.3.a Principles
  • 1.7.3.b Past and Future Developments
  • 1.7.3.c Fusion Power Reactor
  • 1.7.3.d Plasma Magnetic Confinement
  • 1.7.3.e Size and Energy Output of the ITER Tokamak
  • 1.7.3.f Advantages of Fusion
  • 1.8 SUMMARY
  • 2 - Basic Concepts and Definitions
  • 2.1 PROPERTIES OF ATOMIC CONSTITUENTS
  • 2.2 NUCLIDE NOMENCLATURE
  • 2.3 MASS AND ENERGY
  • 2.4 Q VALUE
  • 2.5 NATURALLY OCCURRING RADIONUCLIDES
  • 2.5.1 Radionuclides of Cosmogenic Origin
  • 2.5.2 Long-Lived Radionuclides
  • 2.5.3 Natural Radioactive Decay Chains
  • 2.6 ARTIFICIALLY PRODUCED RADIONUCLIDES
  • 3 - Hall of Fame: Part I
  • DEMOCRITUS (C.460-C.370BC)
  • WILHELM C. RONTGEN (1845-1923)
  • IVAN PAVLOVICH PULUJ (A.K.A. JOHANN PULUJ 1845-1918)
  • HENRI BECQUEREL (1852-1908)
  • PIERRE CURIE (1859-1906) AND MARIE CURIE (1867-1934)
  • PAUL VILLARD (1860-1934)
  • ERNEST RUTHERFORD (1871-1937)
  • JOHANNES ``HANS'' GEIGER (1882-1945)
  • HENDRICK A. LORENTZ (1853-1928)
  • JAMES CLERK MAXWELL (1831-1879)
  • PIETER ZEEMAN (1865-1943)
  • JEAN B. PERRIN (1870-1942)
  • JOSEPH JOHN THOMSON (1856-1940)
  • HANTARO NAGAOKA (1865-1950)
  • PHILIPP LENARD (1862-1947)
  • 4 - Alpha Radiation
  • 4.1 INTRODUCTION
  • 4.2 DECAY ENERGY
  • 4.3 ALPHA DECAY-ENERGY AND HALF-LIFE RELATIONSHIP
  • 4.4 ALPHA PARTICLE INTERACTIONS WITH MATTER
  • 4.5 ALPHA PARTICLE RANGES
  • 5 - Hall of Fame: Part II
  • FREDERICK SODDY (1877-1956)
  • C.T.R. WILSON (1869-1959)
  • FREDERIC JOLIET (1900-1958) AND IRENE JOLIET-CURIE (1897-1956)
  • ENRICO FERMI (1901-1954)
  • WOLFGANG PAULI (1900-1958)
  • FREDERICK REINES (1918-1998) AND CLYDE L. COWAN, JR. (1919-1974)
  • OTTO STERN (1888-1969)
  • 6 - Beta Radiation and Beta Decay
  • 6.1 INTRODUCTION
  • 6.2 NEGATRON (ß-) EMISSION
  • 6.2.1 Basic Principles
  • 6.2.2 Inverse Beta Decay
  • 6.2.3 Neutrino Mass
  • 6.2.4 Negatron Decay Energy
  • 6.3 POSITRON (ß+) EMISSION
  • 6.3.1 Basic Principles
  • 6.3.2 N/Z Ratios and Beta Decay
  • 6.3.3 Positron Decay Energy
  • 6.4 ELECTRON CAPTURE
  • 6.4.1 Basic Principles
  • 6.4.2 EC Decay Energy
  • 6.4.3 Chemical and Pressure Effects on EC Decay Rates
  • 6.5 BRANCHING ß-, ß+, AND EC DECAY
  • 6.6 DOUBLE-BETA (ßß) DECAY
  • 6.6.1 Discovery and Current Research
  • 6.6.2 ßß Decay Energy
  • 6.6.3 Neutrinoless ßß Decay
  • 6.7 BETA PARTICLE INTERACTIONS WITH MATTER
  • 6.8 BETA PARTICLE ABSORPTION AND TRANSMISSION
  • 6.9 STOPPING POWER AND LINEAR ENERGY TRANSFER
  • 6.9.1 Stopping Power
  • 6.9.2 Linear Energy Transfer
  • 7 - Hall of Fame: Part III
  • MAX PLANCK (1858-1947)
  • LOUIS DE BROGLIE (1892-1987)
  • ALBERT EINSTEIN (1879-1955)
  • Early Years
  • Discovery of the Photon Particle
  • Discovery of Molecular Dimensions in Brownian Motion
  • Relativity
  • Relativistic Length Contraction and Time Dilation
  • Length Contraction in Relativity
  • Time Dilation in Relativity
  • Evidence for Relativity Provided by Muons in the Showers of Cosmic Radiation
  • Evidence for Relativity From Particle Accelerator Experiments
  • Equivalence of Mass and Energy (E=mc2)
  • Energy and Mass in Relativity
  • Relativistic Mass Calculations
  • Interaction of Gravitational Mass and Photons
  • Professorships in Switzerland, Czech Republic, Germany, and USA
  • Einstein's Letter to President Franklin D. Roosevelt
  • Einstein the Pacifist
  • ARTHUR H. COMPTON (1892-1962)
  • WU YOUXUN (1897-1977)
  • YOSHIO NISHINA (1890-1951)
  • Formation into Japan's Pioneer of Modern Physics
  • Pioneer of Modern Physics
  • Work on Atomic Bomb Project
  • Heartbreaking Loss and Recovery
  • MAX VON LAUE (1879-1960)
  • SIR WILLIAM HENRY BRAGG (1862-1942) AND SIR WILLIAM LAWRENCE BRAGG (1890-1971)
  • ROSALIND FRANKLIN (1920-1958)
  • HENRY G.J. MOSELEY (1887-1915)
  • CHARLES GLOVER BARKLA (1877-1944)
  • MANNE SIEGBAHN (1886-1978)
  • ROBERT A. MILLIKAN (1868-1953) AND HARVEY FLETCHER (1884-1981)
  • HOMI J. BHABHA (1909-1966)
  • 8 - Electromagnetic Radiation: Photons
  • 8.1 INTRODUCTION
  • 8.2 DUAL NATURE: WAVE AND PARTICLE
  • 8.3 GAMMA RADIATION
  • 8.4 ANNIHILATION RADIATION
  • 8.5 CHERENKOV RADIATION
  • 8.6 X-RADIATION
  • 8.6.1 X-Rays Characterized by Discrete Spectral Lines
  • 8.6.2 Bremsstrahlung
  • 8.6.2.1 Bremsstrahlung in Beta-Particle Absorbers
  • 8.6.2.2 Artificially Produced Bremsstrahlung
  • 8.6.2.3 Inner or Internal Bremsstrahlung
  • 8.6.2.4 Nuclear Bremsstrahlung (Nuclear Startstrahlung)
  • 8.6.3 X-Rays From Beta-Particle Emissions
  • 8.7 SYNCHROTRON RADIATION
  • 8.7.1 Synchrotron Radiation From Natural Sources
  • 8.7.2 Discovery of Synchrotron Radiation
  • 8.7.3 Synchrotron Radiation and Accelerated Electron Properties
  • 8.7.4 Synchrotron Radiation Production and Applications
  • 8.8 INTERACTION OF ELECTROMAGNETIC RADIATION WITH MATTER
  • 8.8.1 Introduction
  • 8.8.2 Photoelectric Effect
  • 8.8.3 Compton Effect
  • 8.8.4 Pair Production
  • 8.8.5 Combined Photon Interactions
  • 9 - Hall of Fame: Part IV
  • JAMES CHADWICK (1891-1974)
  • LISE MEITNER (1878-1968) AND OTTO HAHN (1879-1968)
  • LEO SZILARD (1898-1964)
  • JOSEPH ROTBLAT (1908-2005)
  • THE RUSSELL-EINSTEIN MANIFESTO, LONDON, JULY 9, 1955
  • Resolution
  • Signed
  • EDWARD TELLER (1908-2003)
  • 10 - Neutron Radiation
  • 10.1 INTRODUCTION
  • 10.2 NEUTRON CLASSIFICATION
  • 10.3 NEUTRON SOURCES
  • 10.3.1 Alpha-Particle-Induced Nuclear Reactions
  • 10.3.2 Spontaneous Fission
  • 10.3.3 Neutron-Induced Fission
  • 10.3.3.1 Decay of 90Sr
  • 10.3.3.2 Decay of 143Xe
  • 10.3.4 Photoneutron (?,n) Sources
  • 10.3.5 Accelerator Sources
  • 10.3.6 Nuclear Fusion
  • 10.3.7 Inertial Electrostatic Confinement Fusion (IECF)
  • 10.4 INTERACTIONS OF NEUTRONS WITH MATTER
  • 10.4.1 Elastic Scattering
  • 10.4.2 Inelastic Scattering
  • 10.4.3 Neutron Capture
  • 10.4.4 Nonelastic Reactions
  • 10.4.5 Nuclear Fission
  • 10.5 NEUTRON ATTENUATION AND CROSS-SECTIONS
  • 10.6 NEUTRON DECAY
  • 11 - Hall of Fame: Part V
  • NIELS BOHR (1885-1962)
  • GUSTAV HERTZ (1887-1975) AND JAMES FRANCK (1882-1964)
  • THE FRANCK REPORT, JUNE 11, 1945, JAMES FRANCK (CHAIRMAN)
  • I. Preamble
  • II. Prospectives of Armaments Race
  • III. Prospectives of Agreement
  • IV. Methods of International Control
  • THE FRANCK-HERTZ EXPERIMENT
  • WERNER HEISENBERG (1901-1976), ERWIN SCHRODINGER (1887-1961), MAX BORN (1882-1970), AND PAUL A.M. DIRAC (1902-1984)
  • CLINTON DAVISSON (1881-1958) AND GEORGE PAGET THOMSON (1892-1975)
  • PIERRE VICTOR AUGER (1899-1993)
  • 12 - Atomic Electron Radiation
  • 12.1 INTRODUCTION
  • 12.2 INTERNAL CONVERSION ELECTRONS
  • 12.3 AUGER ELECTRONS
  • 13 - Hall of Fame: Part VI
  • VICTOR F. HESS (1883-1964)
  • CARL D. ANDERSON (1905-1991)
  • PATRICK M.S. BLACKETT (1897-1974)
  • HIDEKI YUKAWA (1907-1981)
  • CECIL F. POWELL (1903-1969)
  • EMILIO SEGRE (1905-1989) AND OWEN CHAMBERLAIN (1920-2006)
  • DONALD A. GLASER (1926-2013)
  • MANUEL SANDOVAL VALLARTA (1899-1977)
  • 14 - Cosmic Radiation
  • 14.1 INTRODUCTION
  • 14.2 CLASSIFICATION AND PROPERTIES
  • 14.3 SHOWERS OF COSMIC RADIATION
  • 14.4 COSMIC RAYS UNDERGROUND
  • 14.5 ORIGINS OF COSMIC RADIATION
  • 14.6 COSMIC MICROWAVE BACKGROUND RADIATION AND THE BIG-BANG THEORY
  • 14.7 RADIATION DOSE FROM COSMIC RADIATION AND OTHER SOURCES
  • 15 - Hall of Fame: Part VII
  • SERGEI IVANOVICH VAVILOV (1891-1951)
  • PAVEL ALEKSEYEVICH CHERENKOV (1904-1990)
  • IL'JA MIKHAILOVICH FRANK (1908-1990) AND IGOR YEVGENYEVICH TAMM (1895-1971)
  • 16 - Cherenkov Radiation
  • 16.1 INTRODUCTION
  • 16.2 THEORY AND PROPERTIES
  • 16.2.1 Threshold Condition
  • 16.2.2 Threshold Energies
  • 16.2.3 Photon Spatial Asymmetry
  • 16.2.4 Photon Spectrum and Radiation Intensity
  • 16.2.5 Duration of Cherenkov Light Flash
  • 16.3 CHERENKOV PHOTONS FROM GAMMA-RAY INTERACTIONS
  • 16.4 PARTICLE IDENTIFICATION
  • 16.4.1 Threshold Cherenkov Counters
  • 16.4.2 Ring Imaging Cherenkov Counters
  • 16.4.3 Proximity-Focusing RICH Counters
  • 16.4.4 Time-of-Propagation Cherenkov Counters
  • 16.4.5 Time-of-Flight Cherenkov Counters
  • 16.5 NEUTRINO DETECTION AND MEASUREMENT
  • 16.6 APPLICATIONS IN RADIONUCLIDE ANALYSIS
  • 17 - Hall of Fame: Part VIII
  • ERNEST LAWRENCE (1901-1958)
  • JOHN D. COCKCROFT (1897-1967) AND ERNEST T.S. WALTON (1903-1995)
  • HANS A. BETHE (1906-2005)
  • WILLARD F. LIBBY (1908-1980)
  • EDWIN M. MCMILLAN (1907-1991)
  • GLENN T. SEABORG (1912-1999)
  • 18 - Radionuclide Decay, Radioactivity Units, and Radionuclide Mass
  • 18.1 INTRODUCTION
  • 18.2 HALF-LIFE
  • 18.3 GENERAL DECAY EQUATIONS
  • 18.4 SECULAR EQUILIBRIUM
  • 18.5 TRANSIENT EQUILIBRIUM
  • 18.6 NO EQUILIBRIUM
  • 18.7 MORE COMPLEX DECAY SCHEMES
  • 18.8 RADIOACTIVITY UNITS AND RADIONUCLIDE MASS
  • 18.8.1 Units of Radioactivity
  • 18.8.2 Correlation of Radioactivity and Radionuclide Mass
  • 19 - Hall of Fame: Part IX
  • MARIA GOEPPERT-MAYER (1906-1972) AND J. HANS D. JENSEN (1907-1973)
  • EUGENE P. WIGNER (1902-1995)
  • CHEN-NING YANG (1922-), TSUNG-DAO LEE (1926-), AND CHIEN-SHIUNG WU (1912-1997)
  • Parity Violation in Beta Decay
  • ISIDOR ISAAC RABI (1898-1988)
  • Important Developments from Rabi's Work on Nuclear Magnetic Resonance
  • Magnetic Properties of Nucleons
  • Nuclear Magnetic Resonance Spectroscopy
  • Magnetic Resonance Imaging
  • RICHARD P. FEYNMAN (1918-1988)
  • 20 - The Atomic Nucleus
  • 20.1 INTRODUCTION
  • 20.2 NUCLEAR RADIUS AND DENSITY
  • 20.3 NUCLEAR FORCES
  • 20.4 BINDING ENERGY
  • 20.4.1 Nuclear Fission
  • 20.4.2 Nuclear Fusion
  • 20.5 NUCLEAR MODELS
  • 20.5.1 Liquid Drop Model
  • 20.5.1.1 Volume Energy avA
  • 20.5.1.2 Surface Energy asA2/3
  • 20.5.1.3 Coulomb Energy ac(Z(Z-1)/A1/3)
  • 20.5.1.4 Volume Symmetry asy((N-Z)2/A)
  • 20.5.1.5 Pairing Energy ±dp(Z,N)
  • 20.5.2 Shell Model
  • 20.5.3 Collective Model
  • 20.6 SUPERHEAVY NUCLEI
  • 20.7 CLUSTER RADIOACTIVITY
  • 20.8 PROTON AND NEUTRON RADIOACTIVITY
  • 20.8.1 Proton Radioactivity
  • 20.8.1.1 Beta-Delayed Proton Emission
  • 20.8.1.2 Direct Proton Emission
  • 20.8.1.3 Detection and Measurement of Simultaneous Proton Radioactivity
  • 20.8.2 Neutron Radioactivity
  • 20.8.2.1 Beta-Delayed Neutron Emission
  • 20.8.2.2 Direct Neutron Emission
  • 20.8.2.3 Detection and Measurement of Neutron Radioactivity
  • 20.9 NUCLEAR DECAY MODES
  • 20.10 NUCLEAR REACTIONS
  • 20.10.1 Reaction Types
  • 20.10.2 Reaction Notation
  • 20.10.3 Energy of Reactions (Q Value)
  • 20.10.4 Reaction Cross-Section
  • 20.11 RADIOACTIVE NUCLEAR RECOIL
  • 20.11.1 Relativistic Expressions
  • 20.11.2 Nonrelativistic Expressions
  • 20.11.2.1 Nuclear Recoil Energy From Alpha Particle Emissions
  • 20.11.2.2 Nuclear Recoil Energy From Gamma-Ray, X-Ray, and Neutrino Emissions
  • 20.11.3 Sample Calculations
  • 20.11.3.1 Nuclear Recoil from Alpha Emissions
  • 20.11.3.2 Nuclear Recoil from Beta Emissions
  • 20.11.3.3 Nuclear Recoil From Gamma-Ray Photon, X-Ray Photon, or Neutrino Emissions
  • 20.11.4 Radioactive Recoil Effects
  • 20.11.4.1 Szilard-Chalmers Process
  • 20.11.4.2 Radioactive Disequilibrium
  • 21 - Hall of Fame: Part X
  • LUIS W. ALVAREZ (1911-1988)
  • MURRAY GELL-MANN (1929-)
  • Strangeness
  • The Eightfold Way
  • Quarks
  • GEORGE ZWEIG (1937-)
  • OSCAR WALLACE GREENBERG (1932-), MOO-YOUNG HAN (1934-), AND HARALD FRITZSCH (1943-)
  • JEROME I. FRIEDMAN (1930-), HENRY W. KENDALL (1926-1999), AND RICHARD E. TAYLOR (1929-)
  • SHELDON L. GLASHOW (1932-), ABDUS SALAM (1926-1996), AND STEVEN WEINBERG (1933-), GERARDUS `T HOOFT (1946-) AND MARTINUS J. ...
  • YOICHIRO NAMBU (1921-), MAKOTO KOBAYASHI (1944-), AND TOSHIHIDE MASKAWA (1940-)
  • FRANCOIS ENGLERT (1932-) AND PETER W. HIGGS (1929-)
  • SERGE HAROCHE (1944-) AND DAVID J. WINELAND (1944-)
  • 22 - The Atom as We Know and Use It
  • 22.1 INTRODUCTION
  • 22.2 FROM DEMOCRITUS' ``ATOMOS'' TO QUARKS AND GLUONS
  • 22.3 THE PARTICLE ZOO
  • 22.3.1 The Electromagnetic Force
  • 22.3.2 The Weak Force
  • 22.3.3 The Strong Force
  • 22.3.4 Gravity
  • 22.4 IMAGES OF THE ATOM
  • 22.5 THE ATOM IN OUR FUTURE
  • A
  • Particle Range-Energy Correlations
  • B
  • C
  • DERIVATION OF THE LORENTZ TRANSFORMATIONS
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok