Rational Design of Enzyme-Nanomaterials

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 22. April 2016
  • |
  • 294 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804833-7 (ISBN)
 

Rational Design of Enzyme-Nanomaterials, the new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in rational design of enzyme-nanomaterials, and includes sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts and nanoparticle-based enzyme sensors.


  • Continues the legacy of this premier serial with quality chapters authored by leaders in the field
  • Covers research methods in rational design of enzyme-nanomaterials
  • Contains sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts, and nanoparticle-based enzyme sensors
0076-6879
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 13,48 MB
978-0-12-804833-7 (9780128048337)
0128048336 (0128048336)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Rational Design of Enzyme-Nanomaterials
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Acknowledgments
  • Chapter One: Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme-Nanoparticle Conjugates Aro ...
  • 1. Theory
  • 2. Equipment
  • 3. Materials
  • 3.1. Buffer Preparation
  • 4. Protocol
  • 4.1. Duration
  • 4.2. Preparation
  • 5. Step 1: Nanoparticle Synthesis
  • 5.1. Overview
  • 5.2. Duration
  • 5.3. Tip
  • 5.4. Tip
  • 5.5. Tip
  • 5.6. Tip
  • 5.7. Tip
  • 6. Step 2: Purification of Enzyme
  • 6.1. Overview
  • 6.2. Duration
  • 6.3. Tip
  • 6.4. Tip
  • 7. Step 3: Preparation of the Aqueous Phase and Oil Phase
  • 7.1. Overview
  • 7.2. Duration
  • 7.3. Tip
  • 7.4. Tip
  • 7.5. Tip
  • 7.6. Tip
  • 7.7. Tip
  • 7.8. Tip
  • 7.9. Tip
  • 8. Step 4: Microparticle Assembly
  • 8.1. Overview
  • 8.2. Duration
  • 8.3. Tip
  • 8.4. Tip
  • 8.5. Tip
  • 9. Step 5: Microparticle Washing
  • 9.1. Overview
  • 9.2. Duration
  • 9.3. Tip
  • 9.4. Tip
  • 10. Conclusions
  • References
  • Chapter Two: Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots
  • 1. Introduction
  • 1.1. Enzyme-Nanoparticle Constructs
  • 1.2. Quantification Assay for Observing Modified Kinetics with Enzyme-QD Conjugates
  • 1.3. Enzyme Activity Sensors Based on Transient QD-Enzyme Interactions
  • 2. Quantification Assay for Observing Modified Kinetics with Enzyme-QD Conjugates
  • 2.1. Materials
  • 2.1.1. Equipment
  • 2.1.2. Reagents
  • 2.2. Enzyme Assembly onto QDs
  • 2.3. Obtaining Kinetic Data of QD-Enzyme Constructs
  • 2.4. Analyzing the Data
  • 3. Enzyme Activity Sensors Based on Transient QD-Enzyme Interactions
  • 3.1. Materials
  • 3.1.1. General Equipment
  • 3.1.2. Peptide Labeling
  • 3.1.2.1. Equipment
  • 3.1.2.2. Reagents
  • 3.1.3. Peptide Precleaving
  • 3.1.3.1. Equipment
  • 3.1.3.2. Reagents
  • 3.1.4. QD-Peptide Construct
  • 3.1.4.1. Equipment
  • 3.1.4.2. Reagents
  • 3.1.5. Spectral Characterization and Kinetics Measurements
  • 3.1.5.1. Equipment
  • 3.1.5.2. Reagents
  • 3.2. Peptide Labeling
  • 3.2.1. Single Cysteine Labeling
  • 3.2.2. Dual Labeling for Control Experiments
  • 3.2.3. Peptide Purification, Quantification, and Storage
  • 3.3. Peptide Precleaving
  • 3.4. QD-Peptide Construct
  • 3.4.1. Formation
  • 3.4.2. Characterization
  • 3.5. Spectral Characterization
  • 3.6. Fixed Enzyme Experiments
  • 3.7. Fixed Substrate Experiments
  • 3.8. Data Analysis
  • 4. Notes
  • Acknowledgments
  • References
  • Chapter Three: Intense PEGylation of Enzyme Surfaces: Relevant Stabilizing Effects
  • 1. Introduction
  • 2. Theory
  • 3. Protocols
  • 3.1. PEGylation of Chemically Aminated Enzymes
  • 3.1.1. Rhizomucor miehei Lipase
  • 3.1.2. Thermomyces lanuginosa Lipase
  • 3.2. PEGylation of Enzymes Coated with Polymers
  • 3.2.1. Candida antarctica B Lipase
  • 3.2.2. Bioxilanase L Plus (Trichoderma reesei endo-1,4-ß-Xylanase)
  • 4. Inactivation of Modified Enzyme Derivatives
  • 5. Conclusions
  • Acknowledgments
  • References
  • Chapter Four: Immobilization of Lipases on Heterofunctional Octyl-Glyoxyl Agarose Supports: Improved Stability and Prevent ...
  • 1. Theory
  • 2. Equipment
  • 3. Materials
  • 3.1. Solutions
  • 4. Step 1. Preparation of the Support Octyl-Glyoxyl Agarose
  • 4.1. Overview
  • 5. Step 2. Immobilization of Lipases via Interfacial Activation on Octyl-Glyoxyl Agarose
  • 5.1. Overview
  • 6. Step 3. Covalent Immobilization of Adsorbed Lipases on Octyl-Glyoxyl Agarose
  • 6.1. Overview
  • Acknowledgments
  • References
  • Chapter Five: Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems
  • 1. Introduction
  • 1.1. Introduction of Enzyme@capsule Nano/Microsystems
  • 1.2. The State-of-the-Art Methods for the Design and Construction of Enzyme@capsule Nano/Microsystems
  • 1.3. Advantages of Incorporating Biomimetic/Bioinspired Chemistries in the Design and Construction of Enzyme@capsule Nano/ ...
  • 2. General Procedure of the Design and Construction of Enzyme@capsule Nano/Microsystems Through Biomimetic/Bioinspired Met ...
  • 2.1. Generation of Enzyme@CaCO3 Templates Through Co-precipitation of Protein Containing CaCl2 and Na2CO3
  • 2.2. Surface Coating on the Templates Through Biomimetic/Bioinspired Methods
  • 2.3. Removal of the CaCO3 Components Through EDTA or Dilute HCl Treatment
  • 2.4. General Characterizations of Enzyme@capsule Nano/Microsystems
  • 2.4.1. Verification of the Formation Process of Enzyme@capsule Nano/Microsystems
  • 2.4.2. Location of the Enzyme in Enzyme@capsule Nano/Microsystems
  • 2.4.3. Activity/Stability of Enzyme@capsule Nano/Microsystems
  • 3. Some Specific Examples
  • 3.1. Biomimetic/Bioinspired Mineralization Approach for the Synthesis of Enzyme@capsule Nano/Microsystems
  • 3.1.1. Combination of Biomimetic/Bioinspired Mineralization with LbL Assembly (Jiang et al., 2009
  • Li et al., 2010
  • Shi, z ...
  • 3.1.1.1. Detailed Synthesis Procedure
  • 3.1.1.2. Some Key Points
  • 3.1.2. Combination of Biomimetic/Bioinspired Mineralization with Surface Seggregation (Shi, Zhang, Wang, Shi, Zhang, et a ...
  • 3.1.2.1. Detailed Synthesis Procedure
  • 3.1.2.2. Some Key Points
  • 3.2. Biomimetic/Bioinspired Adhesion (Catechol Chemistry and Polyphenol Chemistry) Approach for the Synthesis of Enzyme@ca ...
  • 3.2.1. Catechol Chemistry (Shi, Yang, et al., 2013
  • Zhang, Shi, Jiang, Jiang, Qiao, et al., 2011)
  • 3.2.1.1. Detailed Synthesis Procedure
  • 3.2.1.2. Some Key Points
  • 3.2.1.3. Extension of This Method to the Construction of Multienzyme Systems
  • 3.2.2. Polyphenol Chemistry (Zhang, Jiang, Wang, Yang, & Shi, 2015)
  • 3.2.2.1. Detailed Synthesis Procedure
  • 3.2.2.2. Some Key Points
  • 3.3. Combined Biomimetic/Bioinspired Mineralization and Adhesion Approach for the Synthesis of Enzyme@capsule Nano/Microsy ...
  • 3.3.1. Biomimetic/Bioinspired Mineralization Followed by Biomimetic/Bioinspired Adhesion (Zhang, Shi, Jiang, Jiang, Meng, ...
  • 3.3.1.1. Detailed Synthesis Procedure
  • 3.3.1.2. Some Key Points
  • 3.3.1.3. Extension of This Method to the Construction of Multienzyme System (Zhang, Shi, Jiang, Jiang, Meng, et al., 2011)
  • 3.3.2. Biomimetic/Bioinspired Adhesion Followed by Biomimetic/Bioinspired Mineralization (Shi, Zhang, Zhang, Wang, Zhang ...
  • 3.3.2.1. Detailed Synthesis Procedure
  • 3.3.2.2. Some Key Points
  • 4. Concluding Remarks
  • Acknowledgment
  • References
  • Chapter Six: Synergistic Functions of Enzymes Bound to Semiconducting Layers
  • 1. Introduction
  • 2. Fabrication of Enzyme-Intercalated Layered Oxides
  • 2.1. Synthetic Procedure of Colloidal Solution of Exfoliated Titanate Layers with Micrometric Dimensions
  • 2.2. Synthesis of Colloidal Solution of Layered Titanate with Nanometric Dimensions
  • 2.3. Binding of Enzymes to Layered Titanate via Physical Interaction
  • 3. Activity of Enzymes Bound to Titanate Layers
  • 3.1. Activity of Enzymes Intercalated into Micrometric or Nanometric Titanate Layers
  • 3.2. Anti-UV Light Stability of Enzymes Inserted into Layered Titanates
  • 4. Photochemical Control of Enzymatic Activity of Oxidoreductases Bound to Layered Oxides
  • 4.1. Activity Control of Peroxidases Intercalated into FT Layers by UV Light Irradiation
  • 4.2. Visible-Light-Driven Enzymatic Activity of HRP Bound to Semiconductors with a Narrow Band Gap
  • 5. Biorecognition Using Doped Titanate Layers Modified with Biomolecules
  • 6. Magnetic Application of Hybrids Composed of Enzymes and Doped Titanates
  • 6.1. Hybrids Composed of Enzyme and FT Layers
  • 6.2. Nanohybrids Composed of Enzyme, Titanate Nanosheet, and Magnetic Beads
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter Seven: Bioconjugation of Antibodies and Enzyme Labels onto Magnetic Beads
  • 1. Introduction
  • 2. Bioconjugation of Magnetic Beads
  • 2.1. Preparation of Dual-Labeled Magnetic Beads
  • 2.1.1. Tosyl-Activated Magnetic Beads
  • 2.1.2. Streptavidin-Coated Magnetic Beads
  • 3. Characterization of Magnetic Bead Bioconjugates
  • 3.1. 2,2'-Azino-bis(3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Enzymatic Assay
  • 3.2. Bicinchoninic Acid Protein Assay
  • 4. Integration of Magnetic Beads into Immunoassay
  • Acknowledgment
  • References
  • Chapter Eight: Rationally Designed, ``Stable-on-the-Table´´ NanoBiocatalysts Bound to Zr(IV) Phosphate Nanosheets
  • 1. Introduction
  • 1.1. Layered Nanomaterials
  • 1.2. Overview of Our General Strategy to Stabilize Enzymes
  • 1.3. Thermodynamics of Enzyme Denaturation
  • 1.4. The Entropy Hypothesis
  • 1.5. Our Approach to Stabilize Enzymes
  • 1.6. Structure of a-ZrP
  • 1.7. Advantages of Using a-ZrP for Enzyme Loading
  • 2. Methods
  • 2.1. Synthesis of a-ZrP
  • 2.1.1. Characterization of a-ZrP by Powder XRD and FTIR
  • 2.2. Exfoliation of a-ZrP Nanosheets
  • 2.2.1. Characterization of Exfoliated a-ZrP
  • 2.2.2. Powder XRD Studies
  • 2.2.3. Zeta Potential Studies
  • 2.3. Binding of Positively Charged Enzymes to Exfoliated a-ZrP
  • 2.3.1. Circular Dichroism Studies
  • 2.3.1.1. Checking for Baseline Correction
  • 2.3.2. Activity Studies
  • 2.4. Binding of Negatively Charged Proteins to Anionic a-ZrP Nanosheets
  • 2.4.1. Metal Ion Mediated Protein Binding to the Nanosheets
  • 2.4.2. Activity Assay for GOx/Zr4+/a-ZrP
  • 2.4.3. Use of Protein Glues for Enzyme Binding
  • 2.4.4. Preparation of Enzyme/bZrP Complexes
  • References
  • Chapter Nine: Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles
  • 1. Introduction
  • 2. NPs-Based Enzyme Biosensors
  • 2.1. NPs for Biosensing Design
  • 2.2. Immobilization of Enzymes on NPs
  • 2.3. Fabrication of Low-Cost Enzyme Biosensors
  • 3. CeO2 NPs for Enzyme Immobilization and Enzyme-Based Biosensors
  • 4. Design of a CeO2-Based Colorimetric Enzyme Biosensor
  • 4.1. Method Principle and Main Characteristics
  • 4.2. Materials
  • 4.2.1. Sensing Elements
  • 4.2.2. CeO2 NP Sensors
  • 4.2.3. Enzyme and Other Reagents
  • 4.3. Methods
  • 4.3.1. Fabrication of CeO2-Enzyme Paper
  • 4.3.2. Enzyme Immobilization on the CeO2-Silane Paper
  • 4.4. Detection and Measurement Procedure
  • 5. Comments on the Method
  • 5.1. NP Choice
  • 5.2. Enzyme and NP Immobilization
  • 5.3. Testing for Interferences
  • 5.4. Color Analysis
  • Acknowledgments
  • References
  • Chapter Ten: Rational Design of Nanoparticle Platforms for ``Cutting-the-Fat´´: Covalent Immobilization of Lipase, Glycero ...
  • 1. Introduction
  • 2. Use of Rationally Designed Nanoscaffolds for Enzyme Binding
  • 3. Use of Chitosan for Enhancing Nanoparticle Surface Chemistry
  • 4. Experimental
  • 4.1. Combined Assay of Mixture of Free/Native Lipase, GK and GPO
  • 4.1.1. Preparation of Mixture of Enzymes
  • 4.2. Combined Assay of Enzymes
  • 4.2.1. Covalent Co-Immobilization of Lipase, GK, and GPO onto Nanocomposite of ZnONPs/CHIT Electrodeposited onto Pt Electrode
  • 4.2.1.1. Preparation of ZnONPs
  • 4.2.1.2. Characterization of ZnONPs
  • 4.2.1.3. Shape and Size
  • 4.2.1.4. Preparation of ZnONPs-CHIT Composite
  • 4.2.1.5. Deposition of ZnO NPs-CHIT Composite onto Pt Electrode
  • 4.2.1.6. Co-Immobilization of Lipase, GK, and GPO onto ZnO NPs-CHIT/PtE
  • 4.2.1.7. Chemistry of Immobilization of Enzymes on ZnONPs/CHIT Nanocomposite
  • 4.2.2. Covalent Co-Immobilization of Lipase, GK, and GPO onto Nanocomposite Film of Pin5COOH/AuPPy Electrodeposited onto A ...
  • 4.2.2.1. Construction of Gold Polypyrrole (AuPPy) Nanocomposite
  • 4.2.2.2. TEM Characterization of AuPPy Nanocomposite
  • 4.2.2.3. Preparation of Nanocomposites of AuPPy and Pin5COOH
  • 4.2.2.4. Electrodeposition of Pin5COOH/AuPPynano-Composite onto Au Electrode
  • 4.2.2.5. Co-Immobilization of Lipase, GK, and GPO onto Pin5COOH/AuPPy/AuE (Au Electrode)
  • 4.2.2.6. Chemistry of Immobilization of Enzymes on Pin5COOH/AuPPy Nanocomposite
  • 4.2.2.7. Confirmation of Co-Immobilization of Enzymes
  • 4.3. Kinetic Properties of Co-Immobilized Lipase, GK, and GPO
  • 4.3.1. Optimum pH
  • 4.3.2. Optimum Temperature
  • 4.3.3. Response Time
  • 4.3.4. Working Range/Linearity
  • 4.3.5. Storage Stability
  • 4.4. Application of Co-Immobilized Lipase, GK, and GPO onto Nanomaterials
  • 4.4.1. Principle of Amperometric TG Biosensor
  • 4.4.2. Fabrication and Response Measurement of an Amperometric TG Biosensor
  • 4.4.3. Analytic Use of TG Biosensor
  • 4.4.4. Evaluation of TG Biosensor
  • References
  • Chapter Eleven: BioGraphene: Direct Exfoliation of Graphite in a Kitchen Blender for Enzymology Applications
  • 1. Introduction
  • 2. Mechanism of Exfoliation
  • 3. Tunability of the BioGraphene Characteristics
  • 4. Protein Binding to Graphene and Some Biological Applications
  • 5. Methods
  • 5.1. Preparation of bG with BSA
  • 5.2. Characterization of bG/BSA
  • 5.3. Raman Spectroscopy Measurements
  • 5.4. Raman Data Analysis
  • 5.5. Electron Microscopy Studies
  • 5.6. Storage and Stability Studies
  • 5.7. Zeta-Potential Measurements
  • 5.8. UV-Vis Measurements
  • 5.9. Protein Binding to bG
  • 5.10. Activity of HRP Bound to bG
  • 6. Conclusions
  • Acknowledgments
  • References
  • Author Index
  • Subject Index
  • Color Plate
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

168,98 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok