Abbildung von: Power Converters, Drives and Controls for Sustainable Operations - Wiley

Power Converters, Drives and Controls for Sustainable Operations

1. Auflage
Erschienen am 14. Juni 2023
832 Seiten
E-Book
PDF mit Adobe-DRM
978-1-119-79290-1 (ISBN)
237,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Adobe-DRM
E-Book Einzellizenz
Als Download verfügbar
POWER CONVERTERS, DRIVES AND CONTROLS FOR SUSTAINABLE OPERATIONS

Written and edited by a group of experts in the field, this groundbreaking reference work sets the standard for engineers, students, and professionals working with power converters, drives, and controls, offering the scientific community a way towards combating sustainable operations.

The future of energy and power generation is complex. Demand is increasing, and the demand for cleaner energy and electric vehicles (EVs) is increasing with it. With this increase in demand comes an increase in the demand for power converters. Part one of this book is on switched-mode converters and deals with the need for power converters, their topologies, principles of operation, their steady-state performance, and applications. Conventional topologies like buck, boost, buck-boost converters, inverters, multilevel inverters, and derived topologies are covered in part one with their applications in fuel cells, photovoltaics (PVs), and EVs.

Part two is concerned with electrical machines and converters used for EV applications. Standards for EV, charging infrastructure, and wireless charging methodologies are addressed. The last part deals with the dynamic model of the switched-mode converters. In any DC-DC converter, it is imperative to control the output voltage as desired. Such a control may be achieved in a variety of ways. While several types of control strategies are being evolved, the popular method of control is through the duty cycle of the switch at a constant switching frequency. This part of the book briefly reviews the conventional control theory and builds on the same to develop advanced techniques in the closed-loop control of switch mode power converters (SMPC), such as sliding mode control, passivity-based control, model predictive control (MPC), fuzzy logic control (FLC), and backstepping control.

A standard reference work for veteran engineers, scientists, and technicians, this outstanding new volume is also a valuable introduction to new hires and students. Useful to academics, researchers, engineers, students, technicians, and other industry professionals, it is a must-have for any library.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Part I: Power Converter Topologies for Sustainable Applications
  • Chapter 1 DC-DC Power Converter Topologies for Sustainable Applications
  • 1.1 Introduction
  • 1.2 Classifications of DC-DC Converters
  • 1.2.1 Classification of Linear Mode DC-DC Converters
  • 1.2.1.1 Series Regulators
  • 1.2.1.2 Parallel Regulators
  • 1.2.2 Classification of Hard Switching DC-DC Converter
  • 1.2.2.1 List of Isolated DC-DC Topologies
  • 1.2.2.2 Classification of Non-Isolated DC-DC Converters
  • 1.2.3 Classification of Soft Switching DC-DC Converter
  • 1.2.3.1 Zero Current Switching (ZCS)
  • 1.2.3.2 Zero Voltage Switching (ZVS)
  • 1.3 Applications of DC-DC Converters in Real World
  • 1.4 Conclusion
  • References
  • Chapter 2 DC-DC Converters for Fuel Cell Power Sources
  • 2.1 DC-DC Boost Converter in Fuel Cell (FC) Applications
  • 2.2 DC-DC Buck Converter
  • 2.3 DC-DC Buck-Boost Converter
  • 2.4 DC-DC Cuk-Converter
  • 2.5 DC-DC Sepic Converter
  • 2.6 Multi-Phase and Multi-Device Techniques for Ripple Current Reduction
  • 2.6.1 Multi-Device Boost Converter
  • 2.6.2 Multi-Phase Interleaved Boost Converter
  • 2.6.3 Multi-Device Multi-Phase Interleaved Boost Converter
  • 2.7 The Proposed High Gain Multi-Device Multi-Phase Interleaved Boost Converter
  • 2.7.1 Operating Principle of HGMDMPIBC
  • 2.8 Non-Inverting Buck-Boost Converters for Low Voltage FC Applications
  • 2.8.1 Single Switch Non-Inverting Buck-Boost Converter
  • 2.8.2 Interleaved Buck-Boost Converter
  • 2.9 Proposed Multi-Device Buck-Boost Converter for Low Voltage FC Applications
  • 2.10 The Proposed Multi-Device Multi-Phase Interleaved Buck-Boost Converter for Low Voltage FC Applications
  • 2.11 Converter Configurations for Integrating FC with 400 V Grid Voltages
  • 2.11.1 Series Configuration
  • 2.11.2 DC-Distributed Configuration
  • 2.12 Conclusions
  • References
  • Chapter 3 High Gain DC-DC Converters for Photovoltaic Applications
  • 3.1 Introduction
  • 3.1.1 Role of DC-DC Converter in Renewable Energy System
  • 3.1.2 Classical Boost Converter (CBC)
  • 3.2 Gain Extension Mechanisms
  • 3.2.1 Voltage-Lift Capacitor (Clift)
  • 3.2.2 Coupled Inductor (CI)
  • 3.2.3 Voltage Multiplier Cells (VMC)
  • 3.3 Synthesis of High Gain DC-DC Converters
  • 3.3.1 Concept of Interleaving
  • 3.3.2 Interleaving Mechanism with Coupled Inductors (CIs)
  • 3.3.3 VMCs at Secondary Side of CIs
  • 3.4 Development of High Gain DC-DC Converters (HGCs)
  • 3.4.1 HGC with 3 CIs, Clift, and VMC
  • 3.4.1.1 Design Details of HGC-1
  • 3.4.1.2 Experimental Results of Prototype HGC-1 and Discussion
  • 3.4.2 3-Phase Interleaved HGC with 1 CI, Clift, and VMC
  • 3.4.3 Modular HGC with 3 CIs, Clift, and 3 VMCs
  • 3.4.4 Compact HGC Based on Multi-Winding CI, Clift, and VMC
  • 3.4.4.1 Voltage Stress on Devices
  • 3.4.4.2 Current Stress on Devices
  • 3.5 Operating Capabilities of the Proposed HGCs - A Comparison
  • 3.5.1 Electrical Characteristics
  • 3.5.1.1 Ideal Voltage Gain
  • 3.5.1.2 Loss Distribution Profile
  • 3.5.2 Stress on Switches
  • 3.5.2.1 Peak Voltage Stress
  • 3.5.2.2 Peak Current Stress
  • 3.5.3 Structural Parameters
  • 3.5.3.1 Coefficient of Coupling (k)
  • 3.5.3.2 Component Count (CC) and Component Utilisation Ratio (CUR)
  • 3.6 Salient Features of the Presented High Gain Converters
  • 3.7 Summary and Outlook
  • References
  • Chapter 4 Design of DC-DC Converters for Electric Vehicle Wireless Charging Energy Storage System
  • 4.1 Introduction
  • 4.2 Isolated Converters
  • 4.2.1 Bridge Type
  • 4.2.2 Z-Source Type
  • 4.2.3 Sinusoidal Amplitude High Voltage Bus Converter (SAHVC)
  • 4.2.4 Multiport Converter
  • 4.3 Non-Isolated Converter
  • 4.3.1 Conventional Converters
  • 4.3.2 Interleaved Converter
  • 4.3.3 Multi-Device Interleaved
  • 4.4 Design of DC-DC Converter with Integration of ICPT and Battery Implementation with Digital Control Loop
  • 4.4.1 Design of DC-DC for BEV with the Integration of ICPT
  • 4.4.2 Digital Control with Sliding Mode Control Approach
  • 4.5 Design of Converter with Hybrid Energy Storage System and Bidirectional Converter
  • 4.6 Conclusion
  • References
  • Chapter 5 Performance Analysis of Series Load Resonant (SLR) DC-DC Converter
  • 5.1 Introduction
  • 5.2 Theoretical Background
  • 5.3 Simulation Results
  • 5.4 Conclusion
  • References
  • Chapter 6 Review on Different Methodologies of DC-AC Converter
  • 6.1 Introduction
  • 6.2 Different Multilevel Inverter Topologies
  • 6.2.1 Diode Clamped MLI (DCMLI)
  • 6.2.2 Flying Capacitor MLI
  • 6.2.3 Cascaded H-Bridge MLI
  • 6.2.4 New Hybrid Cascaded MLI
  • 6.2.4.1 Stepped Wave Modulation Topology (SWMT)
  • 6.2.4.2 Fourier Series of Proposed Waveform
  • 6.2.4.3 Proposed Topology (New Hybrid MLI)
  • 6.3 Comparison between Various MLI
  • 6.4 Conclusion
  • References
  • Chapter 7 Grid Connected Inverter for Solar Photovoltaic Power Generation
  • 7.1 Single Phase Seven Level Inverter Fed Grid Connected PV System
  • 7.1.1 Seven Level Inverter Topology
  • 7.1.2 PWM Technique for Seven Level Inverter
  • 7.1.3 Modelling and Simulation Analysis of Seven Level Inverter
  • 7.2 Simlink Model of Nine Level H-Bridge Inverter
  • 7.3 Three Phase Fifteen Level Inverter Fed Grid Connected System
  • 7.3.1 Modified System of Fifteen Level Inverter
  • 7.3.2 Modelling of Cascaded H-Bridge Fifteen Level Inverter
  • 7.3.3 Evaluation of THD
  • 7.4 Fesability Analysis of Photovoltaic System in Grid Connected Inverter
  • 7.4.1 Modified PV-DVR System
  • 7.4.1.1 Dynamic Voltage Restorer (DVR) Mode
  • 7.4.1.2 Uninterruptable Power Supply (UPS) Mode
  • 7.4.1.3 Energy Conservation Mode
  • 7.4.1.4 Idle Mode
  • 7.4.2 Photovoltaic DC-DC Converter
  • 7.4.3 Maximum Power Point Tracking of PV System
  • 7.4.4 Methods of Maximum Power Point Tracking
  • 7.4.4.1 Perturb and Observe Method
  • 7.4.4.2 Incremental Conductance Method
  • 7.4.4.3 Current Sweep Method
  • 7.4.4.4 Constant Voltage Method
  • 7.4.5 Comparison of MPPT Methods
  • 7.4.6 Operating Principle of P&O MPPT
  • 7.4.7 Simulation Results of PV-DVR System
  • 7.4.8 Grid Connected System Using PV Syst Tool
  • 7.4.8.1 PV System Simulation Result Analysis
  • 7.5 Conclusion
  • 7.6 Future Scope of Work
  • References
  • Chapter 8 A Novel Fusion Switching Pattern Generation Algorithm for "N-Level" Switching Angle Algorithm Based Trinary Cascaded Hybrid Multi-Level Inverter
  • 8.1 Introduction
  • 8.2 Trinary Cascaded Hybrid MLI Circuitry
  • 8.3 Switching Angle Algorithm
  • 8.3.1 Equal Phase Switching Angle Algorithm (EP-SAA)
  • 8.3.2 Half Equal Phase Switching Angle Algorithm (HEP-SAA)
  • 8.3.3 Feed Forward Switching Angle Algorithm (FF-SAA)
  • 8.3.4 Half Height Switching Angle Algorithm (HH-SAA)
  • 8.4 9-Level Trinary Cascaded Hybrid Multi-Level Inverter
  • 8.4.1 SAA for 9-Level TCHMLI
  • 8.4.2 Generation of Switching Function for the 9-Level Trinary Cascaded Hybrid MLI
  • 8.4.3 Generation of DPWM for the 9-Level Trinary Cascaded Hybrid MLI
  • 8.4.4 Simulation Results of 9-Level Trinary Cascaded Hybrid MLI
  • 8.5 27-Level Trinary Cascaded Hybrid MLI
  • 8.5.1 SAA for 27-Level TCHMLI
  • 8.5.2 Generation of Switching Function for the 27-Level Trinary Cascaded Hybrid MLI
  • 8.5.3 Generation of DPWM for the 27-Level Trinary Cascaded Hybrid MLI
  • 8.5.4 Simulation Results of 27-Level Trinary Cascaded Hybrid MLI
  • 8.6 81-Level Trinary Cascaded Hybrid MLI
  • 8.6.1 SAA for 81-Level Trinary Cascaded Hybrid MLI
  • 8.6.2 Generation of Switching Function for the 81-Level Trinary Cascaded Hybrid MLI
  • 8.6.3 Generation of DPWM for 81-Level Trinary Cascaded Hybrid MLI
  • 8.6.4 Flow Diagram of 81-Level Trinary Cascaded Hybrid MLI
  • 8.6.5 5 Roles of Design Resolution in Trinary Cascaded Hybrid MLI
  • 8.6.6 Simulation Results of 81-Level Trinary Cascaded Hybrid MLI
  • 8.7 FPGA Experimental Validation with Specification
  • 8.8 Hardware Results and Discussion
  • 8.9 Conclusion
  • References
  • Chapter 9 An Inspection on Multilevel Inverters Based on Sustainable Applications
  • 9.1 Introduction
  • 9.2 Multilevel Inverters in Sustainable Applications
  • 9.3 Development of Multilevel Inverter
  • 9.3.1 Diode-Clamped
  • 9.3.2 Flying Capacitor
  • 9.3.3 Cascaded H-Bridge MLI
  • 9.4 Symmetric MLI
  • 9.5 Asymmetric MLI
  • 9.6 An Examination on Current MLI's
  • 9.7 Summary
  • Acknowledgement
  • References
  • Part II: Electric Machines and Drives for Sustainable Applications
  • Chapter 10 Technical Study of Electric Vehicle Charging Infrastructure and Standards
  • 10.1 Introduction
  • 10.2 Background
  • 10.3 Review of EV Charging Infrastructure
  • 10.4 Review of DC-DC Converters for EVCs
  • 10.5 Standards for EV and EVSE
  • 10.5.1 Description of EV Connector
  • 10.6 Charging Stations in India
  • 10.7 Conclusion
  • References
  • Chapter 11 Implementation of Model Predictive Control for Reduced Torque Ripple in Orthopaedic Surgical Drilling Applications with Permanent Magnet Synchronous Machine
  • 11.1 Introduction
  • 11.2 Role of Motor in Orthopaedic Drilling Applications
  • 11.2.1 BLDC Motors
  • 11.2.2 Permanent Magnet Synchronous Motors
  • 11.2.2.1 PMSM Machine Equations
  • 11.2.3 Control Methods of PMSM
  • 11.3 Model Predictive Control
  • 11.3.1 Structure of MPC
  • 11.3.2 Cost Function
  • 11.4 Predictive Control Techniques for PMSM
  • 11.4.1 Conventional Model Predictive Torque Control (MPC)
  • 11.4.2 Proposed MPC Technique
  • 11.5 Implementation and Results
  • 11.5.1 Comparative Study of Steady State Performance of Proposed MPC and Conventional MPC under Loaded Condition
  • 11.5.2 Steady State Performance at 50% Rated Speed
  • 11.5.3 Steady State Performance at 100% Rated Speed
  • 11.5.4 Real-Time Simulation Result Analysis with OPAL-RT Lab
  • 11.5.4.1 Steady-State Response
  • 11.5.4.2 Start-Up Response
  • 11.6 Implementation Analysis
  • 11.7 Conclusion
  • References
  • Chapter 12 High Precision Drives for Piezoelectric Actuators Based Motion Control Microsystems
  • 12.1 Introduction
  • 12.2 Driving Methods of PEA
  • 12.3 Driver Circuits for Driving PEA in High Voltage Applications
  • 12.4 Different Types of Power Supply Used for Driving the Piezo Driver
  • 12.5 Different Types of Voltage Regulator Used for Driving the Piezo Driver
  • 12.6 Conclusions
  • References
  • Chapter 13 Design and Analysis of 31-Level Asymmetrical Multilevel Inverter Topology for R, RL, & Motor Load
  • 13.1 Introduction
  • 13.2 Incorporation of Multilevel Inverters in Various Applications
  • 13.3 Modeling of 31-Level Asymmetric Inverter
  • 13.3.1 Mathematical Modeling of 31-Level Inverter
  • 13.3.2 Modes of Operation
  • 13.3.3 Switching Principle of 31-Level Inverter
  • 13.4 Simulation Circuit and Result Discussions
  • 13.4.1 Block Diagram for Pulse Generation
  • 13.4.2 Simulation of 31-Level Inverter with R Load
  • 13.4.3 Simulation of 31-Level Inverter with RL Load
  • 13.4.4 Simulation of 31-Level Inverter Fed with 1ö Induction Motor
  • 13.5 Conclusion
  • Acknowledgement
  • References
  • Chapter 14 Permanent Magnet Assisted Synchronous Reluctance Motor: Analysis and Design with Rare Earth Free Hybrid Magnets
  • 14.1 Introduction
  • 14.2 Literature Survey
  • 14.3 Construction and Torque Equation
  • 14.4 Design Specifications and Machine Topologies
  • 14.5 No-Load Characteristics
  • 14.6 Performance at Various Operating Regions
  • 14.7 Conclusion
  • Acknowledgment
  • References
  • Chapter 15 Design of Bidirectional DC - DC Converters and Controllers for Hybrid Energy Sources in Electric Vehicles
  • 15.1 Introduction
  • 15.2 Need For Hybrid Energy Management Systems in EV
  • 15.3 Hybrid Energy Storage System (HESS)
  • 15.3.1 Passive Parallel HESS
  • 15.3.2 Parallel Converter HESS
  • 15.4 Bidirectional DC-DC Converters (BDC)
  • 15.5 Specifications of DC-DC Converters
  • 15.6 Control Strategy
  • 15.7 Results and Discussion
  • 15.8 Conclusions
  • References
  • Chapter 16 Design of Rare Earth Magnet Free Traction Motor
  • 16.1 Introduction
  • 16.2 Comparison Among Traction Motor Choices
  • 16.3 Motor Peak Power Calculation Based on Vehicle Dynamics
  • 16.4 Operating Principle of SynRM & Basic Terminologies
  • 16.5 SynRM Design Concepts: Effect of Design Parameters on Performance
  • 16.6 Analytical Design of SynRM
  • 16.6.1 Stator & Winding Design
  • 16.6.2 Rotor Design
  • 16.6.2.1 Determining Barrier End Angle, ám
  • 16.6.2.2 Determining Segment Width, Si
  • 16.6.2.3 Determining Barrier Width, W1i
  • 16.7 Electromagnetic Analysis -Results & Discussion
  • 16.8 Investigation on Impact of Different Parameters
  • 16.8.1 Torque-Speed Curve
  • 16.9 Summary
  • 16.10 Future Work
  • References
  • Chapter 17 Implementation of Automatic Unmanned Battery Charging System for Electric Cars
  • 17.1 Introduction
  • 17.2 Proposed System
  • 17.3 MATLAB Simulation
  • 17.3.1 Mathematical Modelling
  • 17.3.2 Simulation and Analysis of Battery Discharging at EV Charging Station
  • 17.4 Conclusion
  • References
  • Chapter 18 Improved Dual Output DC-DC Converter for Electric Vehicle Charging Application
  • 18.1 Introduction
  • 18.2 Proposed Dual Output Quadratic Boost Converter
  • 18.2.1 Solar PV System
  • 18.2.1.1 Mathematical Modeling of PV System
  • 18.2.2 Switching Methodology
  • 18.2.2.1 Topology of Proposed Converter
  • 18.2.3 Estimation of Parameters of Proposed SIDO Converter
  • 18.2.3.1 Design Example
  • 18.3 Simulation of the Proposed Converter
  • 18.4 Experimental Results
  • 18.5 Conclusion
  • References
  • Chapter 19 DFIG Based Wind Energy Conversion Using Direct Matrix Converter
  • Chapter-I
  • Introduction
  • 19.1 Introduction to Matrix Converters
  • 19.2 Introduction to Control and Modulation Techniques in Matrix Convertor
  • 19.3 Introduction to Predictive Control Techniques
  • Chapter-II
  • Concept and System Description: Doubly Fed Induction Generator (DFIG) in Wind Energy Conversion System
  • Chapter-III
  • Modeling and Simulation of DFIG in MATLAB
  • Chapter-IV
  • The Matrix Converter and Predictive Control Technique
  • 19.4 Topologies of Matrix Converters and Use of Predictive Control
  • 19.5 Conclusion
  • 19.6 Scope for Future Work
  • References
  • Part III: Trends in Control Methods for Sustainable Applications
  • Chapter 20 Microgrid: Recent Trends and Control
  • 20.1 Introduction
  • 20.2 MG Concept
  • 20.2.1 Different Structures of MG
  • 20.2.1.1 AC MG
  • 20.2.1.2 DC MG
  • 20.2.1.3 Hybrid AC/DC MG
  • 20.2.1.4 Urban DC MG
  • 20.2.1.5 Ceiling DC MG
  • 20.3 MG Control Layer
  • 20.4 Functional Requirements of MG Management
  • 20.4.1 Forecast
  • 20.4.2 Real-Time Optimization
  • 20.4.3 Data Analysis and Communication
  • 20.4.4 Human Machine Interface
  • 20.5 Energy Management Schemes
  • 20.5.1 Communication-Based Energy Management
  • 20.5.2 The Communication-Less Energy Management System
  • 20.6 Overview of MG Control
  • 20.6.1 Power Flow Control by Current Regulation
  • 20.6.2 Power Flow Control by Voltage Regulation
  • 20.6.3 Agent-Based Control
  • 20.6.4 Multi-Agent System (MAS) Based Distributed Control
  • 20.6.5 PQ Control
  • 20.6.6 VSI Control
  • 20.6.7 Central Control
  • 20.6.8 Master/Slave Control
  • 20.6.9 Distributed Control
  • 20.6.10 Droop Control
  • 20.6.11 Control Design Based on Transfer Function
  • 20.6.12 Direct Lyapunov Control (DLC)
  • 20.6.13 Passivity Based Control (PBC)
  • 20.6.14 Model Predictive Control (MPC)
  • 20.7 IEEE and IEC Standards
  • 20.8 Challenges of MG Controls
  • 20.8.1 Future Trends
  • Acknowledgement
  • References
  • Chapter 21 Control Techniques in Sustainable Applications
  • 21.1 Introduction
  • 21.2 Sliding Mode Control Techniques in Sustainable Applications
  • 21.3 Passivity-Based Control in Sustainable Applications
  • 21.4 Model Predictive Control in Sustainable Applications
  • 21.5 Conclusion
  • Acknowledgement
  • References
  • Chapter 22 Optimization Techniques for Minimizing Power Loss in Radial Distribution Systems by Placing Wind and Solar Systems
  • I. Introduction
  • 22.1 Distribution Systems
  • 22.2 Radial Distribution Network
  • 22.3 Power Loss Minimization
  • 22.4 Optimization Techniques
  • 22.5 MATLAB Tools for Optimization Techniques
  • 22.6 Conclusion
  • References
  • Appendix
  • Chapter 23 Passivity Based Control for DC-DC Converters
  • 23.1 Introduction
  • 23.2 Passivity Based Control
  • 23.3 Control Law Generation Using ESDI, ESEDPOF, ETEDPOF
  • 23.3.1 Energy Shaping and Damping Injection (ESDI)
  • 23.3.2 Exact Tracking Error Dynamics Passive Output Feedback (ETEDPOF)
  • 23.3.3 Exact Static Error Dynamics Passive Output Feedback
  • 23.4 Control Law Generation Using ETEDPOF Method for DC Drives
  • 23.4.1 Buck Converter Fed DC Motor
  • 23.4.2 Boost Converter Fed DC Motor
  • 23.4.3 Luo Converter Fed DC Motor
  • 23.5 Sensitivity Analysis
  • 23.5.1 Sensitivity Analysis of Buck Converter
  • 23.5.2 Sensitivity Analysis of Boost Converter
  • 23.5.3 Sensitivity Analysis of a Luo Converter
  • 23.6 Reference Profile Generation
  • 23.6.1 Boost Converter Fed DC Motor
  • 23.6.2 Luo Converter Fed DC Motor
  • 23.7 Load Torque Estimation
  • 23.7.1 Reduced-Order Observer for Load Torque Estimation
  • 23.7.2 SROO Approach for Load Torque Estimation
  • 23.7.3 Load Torque Estimation Using Online Algebraic Approach
  • 23.7.4 Sensorless Online Algebraic Approach (SAA) for Load Torque Estimation
  • 23.8 Applications of PBC
  • 23.9 Conclusion
  • References
  • Chapter 24 Modeling, Analysis, and Design of a Fuzzy Logic Controller for Sustainable System Using MATLAB
  • 24.1 Introduction
  • 24.2 Modeling of MIMO System
  • 24.3 Analysis of MIMO System Using MATLAB
  • 24.4 Optimization Techniques for PID Parameter
  • 24.4.1 Controller Design
  • 24.4.1.1 PID Controller Design
  • 24.4.2 Optimization of PID Controller Parameter
  • 24.5 Fuzzy Logic Controller Using MATLAB/Simulink
  • 24.6 Conclusion
  • References
  • Chapter 25 Development of Backstepping Controller for Buck Converter
  • 25.1 Introduction
  • 25.2 Buck Converter With R-Load
  • 25.2.1 Mathematical Model
  • 25.2.2 Buck Converter with PMDC Motor
  • 25.2.3 Mathematical Model
  • 25.3 Controller Design
  • 25.3.1 Basic Block Diagram for PI/Backstepping Controller
  • 25.3.2 Conventional PI Controller Design
  • 25.3.3 Backstepping Controller Design
  • 25.3.4 Backstepping Control Algorithm
  • 25.3.5 Controller Design for Buck Converter with R-Load
  • 25.4 Simulation Results
  • 25.5 Hardware Details
  • 25.5.1 Buck Converter Specifications
  • 25.5.2 Advanced Regulating Pulse Width Modulator
  • 25.5.3 Principles of Operation
  • 25.6 Hardware Results
  • 25.7 Conclusion
  • References
  • Chapter 26 Analysing Control Algorithms for Controlling the Speed of BLDC Motors Using Green IoT
  • 26.1 Introduction
  • 26.2 Working of BLDC Motor
  • 26.3 Speed Control of Motor
  • 26.4 Speed Control of BLDC Motor with FPGA
  • 26.5 Advancements in Green IoT for BLDC Motors
  • 26.6 Conclusion
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten. 

Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer  E-Book Hilfe.