Machine Learning in Cognitive IoT

 
 
CRC Press
  • erschienen am 20. August 2020
  • |
  • 318 Seiten
 
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-1-000-76759-9 (ISBN)
 

This book covers the different technologies of Internet, and machine learning capabilities involved in Cognitive Internet of Things (CIoT). Machine learning is explored by covering all the technical issues and various models used for data analytics during decision making at different steps. It initiates with IoT basics, its history, architecture and applications followed by capabilities of CIoT in real world and description of machine learning (ML) in data mining. Further, it explains various ML techniques and paradigms with different phases of data pre-processing and feature engineering. Each chapter includes sample questions to help understand concepts of ML used in different applications.

  • Explains integration of Machine Learning in IoT for building an efficient decision support system
  • Covers IoT, CIoT, machine learning paradigms and models
  • Includes implementation of machine learning models in R
  • Help the analysts and developers to work efficiently with emerging technologies such as data analytics, data processing, Big Data, Robotics
  • Includes programming codes in Python/Matlab/R alongwith practical examples, questions and multiple choice questions
  • Englisch
  • London
  • |
  • Großbritannien
Taylor & Francis Ltd
  • Für höhere Schule und Studium
90 schwarz-weiße Abbildungen, 43 schwarz-weiße Tabellen
  • 11,64 MB
978-1-000-76759-9 (9781000767599)
weitere Ausgaben werden ermittelt

Dr. Neeraj Kumar is working as Full Professor in the Department of Computer Science and Engineering, Thapar Institute of Engineering & Technology, Patiala (Pb.), India. Prof. Neeraj is an internationally renowned researcher in the areas of VANET & CPS Smart Grid & IoT Mobile Cloud computing & Big Data and Cryptography. He has published more than 300 technical research papers in leading journals and conferences from IEEE, Elsevier, Springer, John Wiley, and Taylor and Francis. He has guided many research scholars leading to Ph.D. and M.E./M.Tech. He is member of the Cyber-Physical Systems and Security (CPSS) research group. He has research funding from DST, CSIR, UGC, and TCS. He has won best papers awards from IEEE ICC and IEEE Systems Journals 2018. He is a senior member of IEEE and is in the editorial board of various journals of repute.

Dr. Aaisha Makkar received her Bachelor of Computer Applications degree from Panjab University, Chandigarh, India in 2010 and Master of Computer Applications from National Institute of Technology (NIT), Kurukshetra, India in 2013. She had worked as an Assistant Professor in Computer Application Department of NIT, Kurukshetra. She obtained her Ph.D. degree from Computer Science and Engineering Department in Thapar Institute of Engineering &Technology, Patiala (Punjab), India. Her research interests in data mining, web mining, algorithms, machine learning and Internet of thing. She has experience of more than 10 years in teaching and research. He has more than 10 research publications in good journals of repute.

Chapter 1: Internet of Things Chapter 2: Cognitive Internet of Things Chapter 3: Data mining in IoT Chapter 4: Machine Learning Techniques Chapter 5: R Programming Chapter 6: Machine Learning Paradigms Chapter 7: Different Machine Learning Models Chapter 8: Data Processing Chapter 9: Feature Engineering and Optimization Chapter 10: Evaluation and Validation of Results Chapter 11: Solutions Chapter 12: Data Set Bibliography

Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

40,49 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF ohne DRM
siehe Systemvoraussetzungen
E-Book bestellen