Food Industry Wastes

Assessment and Recuperation of Commodities
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 31. Januar 2013
  • |
  • 338 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-391928-1 (ISBN)
 

Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book provides a guide for implementing bioprocessing techniques. It also helps researchers develop new options for the recuperation of these wastes for community benefit.

More than 34 million tons of food waste was generated in the United States in 2009, at a cost of approximately $43 billion. And while less than three percent of that waste was recovered and recycled, there is growing interest and development in recovering and recycling food waste. These processes have the potential not only to reduce greenhouse gases, but to provide energy and resources for other purposes.

This book examines these topics in detail, starting with sources, characterization and composition of food wastes, and development of green production strategies. The book then turns to treatment techniques such as solid-state fermentation and anaerobic digestion of solid food waste for biogas and fertilizer. A deep section on innovative biocatalysts and bioreactors follows, encompassing hydrogen generation and thermophilic aerobic bioprocessing technologies. Rounding out the volume are extensive sections on water footprints, including electricity generation from microbial fuel cells (MFCs), and life cycle assessments.


  • Food waste is an area of focus for a wide range of related industries from food science to energy and engineering
  • Outlines the development of green product strategies
  • International authoring team represents the leading edge in research and development
  • Highlights leading trends of current research as well as future opportunities for reusing food waste
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 15,91 MB
978-0-12-391928-1 (9780123919281)
0123919282 (0123919282)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Food Industry Wastes
  • Copyright Page
  • Dedication
  • Contents
  • Contributors
  • Preface
  • Introduction: Causes and Challenges of Food Wastage
  • 1 Sustainability of the Food Supply Chain
  • 2 Quantity of Food Wastes
  • 3 Water Waste
  • 4 Environmental Effect of Food Waste
  • 5 Conclusions
  • References
  • Abbreviations and Glossary
  • Editor Biographies
  • I. Food Industry Wastes: Problems and Opportunities
  • 1 Recent European Legislation on Management of Wastes in the Food Industry
  • 1 Introduction
  • 1.1 Definitions of Food Industry Waste (FIW)
  • 1.2 Waste Streams Considered in This Book
  • 2 Various Legal Aspects of Food Waste
  • 2.1 Selecting Best Available Technique Candidates for the Food and Drink Sector
  • 3 Effectiveness of Waste Management Policies in the European Union
  • 3.1 Adoption of a "Recycling Society" in the EU
  • 3.2 Main Stipulations of the Landfill Directive 1999/31/EC
  • 3.2.1 The European Environment Agency Report No 7/2009
  • 3.2.1.1 Aims
  • 3.2.1.2 Indicator-Based Analysis
  • 3.2.1.3 Interviews with Key Stakeholders
  • 3.2.1.4 Policy Instruments
  • German Case Study
  • Hungarian Case Study
  • 3.2.1.5 Landfill Taxes and Gate Fees
  • 3.2.1.6 Public Acceptance
  • 3.3 European Waste Framework Directive (WFD)
  • 4 Biowaste Management Policy Updates
  • 4.1 Landfill Bans on Food Waste
  • 4.1.1 Introduction of New Regulations and the Right Policies
  • 4.2 Selection of Measures
  • 4.3 Example of Application of Waste Management Legislation in Ireland
  • 4.4 Waste Management for the Food Industries in the USA and Canada
  • 5 Policy Recommendations Identified for Their Prevention Potential
  • 6 Environmental Management Standards and Their Application in the Food Industry
  • 7 Conclusions
  • References
  • 2 Development of Green Production Strategies
  • 1 Introduction
  • 2 Engineering Design Principles for Industrial Ecology
  • 2.1 History and Definitions of Industrial Ecology
  • 2.2 Complex Adaptive Self-Organizing Hierarchical Open (SOHO) System
  • 2.2.1 Ecosystems as Self-Organizing Systems
  • 2.3 Sustainable Livelihood (SL)
  • 2.4 Ecological Integrity
  • 2.4.1 A Conceptual Model of Industrial Ecology
  • 2.5 Design Principles and Tools for Industrial Ecology
  • 2.5.1 Interfacing
  • 2.5.1.1 Focus on Suboptimization and Example with a Student Residence Cafeteria
  • 2.5.2 Mimicry of Natural Ecosystems
  • 2.5.3 Using Appropriate Biotechnology
  • 2.5.4 Renewable Resources
  • 3 Barriers to Adoption of Industrial Ecology and Drivers of Change
  • 3.1 Constraints and Incentives for Industrial Ecology
  • 3.2 Eco-Innovation as a Driver of Sustainable Manufacturing
  • 3.3 Drivers of and Barriers to Eco-Innovation
  • 4 Educating Industrial Ecologists
  • 5 Green Production
  • 5.1 Principles of Green Production
  • 5.2 Green Production Criteria
  • 6 Sustainability in the Global Food and Drink Industry
  • 7 Holistic Approach in Food Production
  • 7.1 Development of Green Production Strategy
  • 7.2 The Upgrading Concept
  • 8 The Green Biorefinery Concept
  • 9 Anaerobic Digestion and Biogas Production Technology
  • 10 Energy Generated by Food and Farm Co-Digestion
  • 11 Case Study 1: Energy Lost in Food Waste
  • 12 Conclusions
  • References
  • 3 Sources, Characterization, and Composition of Food Industry Wastes
  • 1 Introduction
  • 1.1 Sources of Food Wastes
  • 1.1.1 Household Waste
  • 1.1.2 Retailer Wastes
  • 2 Characterization and Composition of Food Wastes
  • 2.1 Fruit-and-Vegetable Wastes
  • 2.1.1 Fruit Wastes
  • 2.1.1.1 Apple pomace
  • 2.1.1.2 Grape Pomace
  • 2.1.1.3 Citrus Pomace
  • 2.1.2 Vegetable Waste
  • 2.1.2.1 Onion Wastes
  • 2.1.2.2 Potato Co-Products
  • 2.2 Olive Oil Industry
  • 2.3 Fermentation Industry Wastes
  • 2.3.1 Quantities of Bioethanol Production
  • 2.3.2 Composition of Distillery Wastes
  • 2.3.2.1 Sugar-Based Feedstock
  • 2.3.2.2 Starch-Based Feedstock
  • 2.4 Dairy Industry
  • 2.5 Meat and Poultry Industry Wastes
  • 2.5.1 Meat Production Waste
  • 2.5.2 Poultry Wastes
  • 2.6 Seafood By-Products
  • 2.6.1 Chemical Composition of Fish Waste
  • 2.6.2 Crustacean Wastes
  • 3 Biochemical/Chemical Analytical Methods
  • 4 Conclusions
  • References
  • II. Treatment of Solid Food Wastes
  • 4 Use of Waste Bread to Produce Fermentation Products
  • 1 Introduction
  • 2 Bread as a Major Dietary Staple
  • 2.1 Staling and Spoilage
  • 2.1.1 Staling of Bread
  • 2.1.2 Spoilage of Bread
  • 3 The Size of the Bread Waste Problem
  • 3.1 Estimated Wastage
  • 4 Utilization of Bread and Bakery Wastes
  • 4.1 Conceptualizing How Best to Utilize Waste Bread
  • 5 Solid-State Fermentation of Bread Waste
  • 5.1 Optimum Particle Size
  • 5.2 Optimum Moisture Content
  • 5.3 Optimum Duration for Solid-State Fermentation
  • 5.3.1 Germination (Lag) Phase
  • 5.3.2 Growth Phase
  • 5.3.3 Stationary Phase
  • 5.3.4 Death Phase
  • 5.3.5 Termination of the Fermentation
  • 6 Process Development Opportunities
  • 7 Conclusions
  • References
  • 5 Recovery of Commodities from Food Wastes Using Solid-State Fermentation
  • 1 Introduction
  • 1.1 Economically and Industrially Important Advantages of SSF
  • 1.2 Comparison of SSF and SmF
  • 2 Selection of Bioreactor Design for SSF
  • 2.1 Classification of Bioreactors for SSF
  • 2.2 Group 1: SSF Bioreactors without Forced Aeration (Tray Bioreactors)
  • 2.2.1 Current Challenges in Design, Operation and Scale-Up of Tray Bioreactors
  • 2.3 Group 2: Static Bed with Forced Aeration (Packed-Bed Bioreactors)
  • 2.3.1 Key Considerations in Designing Packed Beds
  • 2.4 Group 3: Continuously Agitated SSF Bioreactors with Air Circulation (Rotating and Stirred Drums)
  • 2.4.1 Key Considerations in Designing and Operating Rotating and Stirred Drums
  • 2.4.2 Intermittently Mixed Bed Bioreactors with Forced Aeration (Mixed and Aerated)
  • 2.5 Group 4: Bioreactors with Both Continuous Mixing and Forced Aeration (Mixed with Forced Aeration)
  • 2.6 Examples of SSF Bioreactor Applications
  • 3 Mass and Heat Transfer Phenomena in SSF
  • 3.1 Microscale Phenomena
  • 3.2 Macroscale Phenomena
  • 3.2.1 Mass Transfer Aspects
  • 3.2.2 Heat Transfer Aspects
  • 4 Applications of SSF
  • 4.1 Bulk Chemicals and Products: Organic Acids, Ethanol, Enzymes, Polysaccharides, and Feed Protein
  • 4.1.1 Organic Acids from Fruit Pomace
  • 4.1.1.1 Lactic Acid Production
  • 4.1.1.2 Citric Acid Production
  • 4.1.1.3 Fatty Acid Production
  • 4.1.2 Production of Ethanol
  • 4.1.3 Production of Enzymes
  • 4.1.3.1 a-Amylase
  • 4.1.3.2 Xylanase
  • 4.1.3.3 Protease
  • 4.1.3.4 Laccase
  • 4.1.3.5 Tannase
  • 4.1.4 Production of Polysaccharides
  • 4.1.5 Production of Baker's Yeast
  • 4.1.6 Feed Protein
  • 4.2 Production of Fine Chemicals: Aroma Compounds, Antibiotics and Pigments
  • 4.2.1 Aroma Compounds
  • 4.2.2 Antibiotics
  • 4.2.3 Production of Pigments
  • 5 Conclusions
  • References
  • 6 Functional Food and Nutraceuticals Derived from Food Industry Wastes
  • 1 Introduction
  • 1.1 Definition of Nutraceuticals and Functional Food
  • 2 Phenolic Compounds Derived from Fruit-and-Vegetable Processing Wastes
  • 2.1 Flavonoids
  • 2.2 Polyphenol Content of Grape Wine Wastes
  • 2.2.1 Proanthocyanidins
  • 2.2.2 Resveratrol
  • 2.2.3 Anthocyanins
  • 2.3 Polyphenols in Apple Pomace
  • 3 Vegetable Flavonoids
  • 3.1 Onion Flavonoids
  • 3.2 Flavonols of Onions
  • 3.3 Functionality of Flavonoids
  • 3.3.1 Prevention of Atherosclerosis and Cardiovascular Disease
  • 3.3.2 Antioxidant Activity
  • 3.3.3 Metabolic Syndrome
  • 3.3.4 Hormonal Activity
  • 4 Coloring Agents and Antioxidants
  • 4.1 Betalains
  • 4.2 Lycopenes
  • 5 Dietary Fibers
  • 6 Sulfur-Containing Bioactive Compounds
  • 6.1 Cabbage Glucosinolates
  • 6.2 Methods of Processing
  • 7 Extraction Processes from Food-and-Vegetable Waste
  • 7.1 Extraction of Phenolic Compounds from Olive Pomace
  • 7.2 Solvent and Enzyme-Aided Aqueous Extraction of Goldenberry
  • 7.3 Extraction of Antioxidants from Potato Peels by Pressurized Liquids
  • 7.4 Extraction of Phytochemicals from Common Vegetables
  • 8 Whey as a Source of Bioactive Peptides
  • 8.1 Occurrence of Bioactive Peptides in Whey and Other Dairy By-Products
  • 8.2 Functionality of Bioactive Peptides
  • 8.2.1 Regulation of the Gastrointestinal System
  • 8.2.2 Regulation of the Immune System
  • 8.2.3 Regulation of the Cardiovascular System
  • 8.2.4 Regulation of the Nervous System
  • 8.2.5 Antimicrobial Function
  • 8.2.6 Growth Factor Activity
  • 8.3 Commercial Dairy Products Containing Bioactive Peptides
  • 8.4 Commercial-Scale Production
  • 9 Product Development, Marketing, and Consumer Acceptance of Functional Foods
  • 10 Conclusions
  • References
  • 7 Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion
  • 1 Introduction
  • 2 Basic Principles of Anaerobic Digestion
  • 2.1 Conversion Flow of Organic Matter to Methane
  • 2.1.1 Disintegration and Hydrolysis
  • 2.1.2 Acidogenesis
  • 2.1.3 Acetogenesis (H2-producing)
  • 2.1.4 Methanogenesis
  • 2.2 Methane Production Potential of Organic Wastes
  • 2.3 Environmental Factors Affecting Anaerobic Digestion
  • 2.3.1 Temperature
  • 2.3.2 pH and Alkalinity
  • 2.3.3 Biological Toxic Compounds
  • 3 Process Development for Anaerobic Digestion of Organic Wastes
  • 3.1 Reactor Design for Anaerobic Digestion
  • 3.1.1 Continuously Stirred Tank Reactor (CSTR)
  • 3.1.2 Repeated Batch System
  • 3.1.3 Plugflow Reactor System
  • 3.2 High-Rate Methane Fermentation
  • 3.2.1 UASB System
  • 3.2.2 EGSB System
  • 3.2.3 UAFP System
  • 3.3 Multistage Systems
  • 3.3.1 Hydrogen-Methane Two-Stage Fermentation System (Hy-Met Process)
  • 3.3.1.1 Application to Brewery Effluent
  • 3.3.1.2 Application to Bread Manufacturing Wastes
  • 3.3.2 Ammonia-Methane Two-Stage System
  • 4 Fertilization of Residues After Anaerobic Digestion
  • 5 Conclusion
  • References
  • III. Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes
  • 8 Use of Immobilized Biocatalyst for Valorization of Whey Lactose
  • 1 Introduction
  • 2 Methods of Immobilization
  • 2.1 Definition of Immobilized Biocatalyst
  • 2.2 Adsorption, Gel Entrapment, and Covalent-Binding
  • 2.3 Microencapsulation
  • 2.3.1 Emulsion/Interfacial Polymerization
  • 2.3.2 Liquid Droplet Forming-One-Step Method
  • 2.4 Stabilization of Enzymes via Immobilization
  • 2.4.1 Multipoint Covalent Attachment
  • 2.4.2 Multi-Subunit Immobilization
  • 2.4.3 Chemical Modifications
  • 3 Immobilized Enzymes
  • 3.1 Lactose Hydrolysis
  • 3.2 Production of Galacto-Oligosaccharides
  • 4 Immobilized Cell Systems
  • 4.1 Ethanol Production
  • 4.2 Lactic Acid Production
  • 5 Bioreactor Systems With Immobilized Biocatalyst
  • 5.1 Packed-Bed Reactors (PBRs)
  • 5.2 Continuous-Flow Stirred-Tank Reactors (CSTR)
  • 5.3 Fluidized-Bed Reactors (FBRs)
  • 5.4 Membrane Reactors (MRs)
  • 6 Kinetic Performance of the Immobilized Cells (IMCs)
  • 6.1 Kinetics of Free Cells
  • 6.2 Mass Transfer Considerations and the Observed Reaction Rate in an IMC System
  • 7 Mathematical Modeling of Immobilized Cell System
  • Case Study 1: Lactic Acid Production from Lactose by Immobilized Lactobacillus Casei Cells
  • 8 Industrial Applications
  • 8.1 Lactose Hydrolysis with Immobilized ß-Galactosidase
  • 8.2 Ethanol Production from Whey with Flocculated Yeasts
  • 9 Conclusions
  • References
  • 9 Hydrogen Generation from Food Industry and Biodiesel Wastes
  • 1 Introduction
  • 2 Basic Principle of Dark Hydrogen Fermentation
  • 2.1 Hydrogen Production by Strict Anaerobes
  • 2.2 Hydrogen Production by Facultative Anaerobes
  • 3 Effect of Intracellular and Extracellular Redox States on Hydrogen Production
  • 4 Bioreactor System for High-Rate Hydrogen Production
  • 5 Hydrogen Production from Industrial Organic Wastes
  • 5.1 Carbohydrates
  • 5.2 Food Oil (Glycerol-Rich Residue Discharged after Biodiesel Manufacturing)
  • 6 Treatment of Effluent After Dark Hydrogen Fermentation
  • 6.1 Methane Fermentation
  • 6.2 Photobiological Hydrogen Fermentation
  • 7 Concluding Remarks
  • References
  • 10 Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater
  • 1 Introduction
  • 2 Thermophilic Aerobic Digestion
  • 3 Thermophilic Microorganisms
  • 4 Bioremediation and Bio-Augmentation Strategies
  • 4.1 Target Wastes
  • 4.1.1 Bioconversion of Cheese Whey
  • 4.1.1.1 Strategy 1 Experiment
  • 4.1.1.2 Strategy 2 Experiments
  • 4.1.1.3 Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process
  • 4.1.2 Bioconversion of Grain Stillage/Distiller's Slops
  • 4.1.3 Bioconversion of Potato Stillage/Distiller's Slops
  • 4.1.4 Bioconversion of Potato Starch Production Wastes
  • 4.1.5 Bioconversion of Wheat Stillage
  • 5 A New Bioreactor Designed for Thermophilic Digestion
  • 5.1 General Layout and Operation System
  • 5.2 Bioreactor Concept and Description
  • 5.3 Bioreactor Performance
  • 6 Feed Production From Food Industry Wastes
  • 7 Conclusions
  • References
  • 11 Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater
  • 1 Introduction
  • 2 Mathematical Models of Bioreactors and Biodegradation Processes
  • 2.1 Modeling of Aerobic Biodegradation of Cheese Whey
  • 2.1.1 Approach I
  • 2.1.2 Approach II
  • 2.2 Modeling of the Biodegradation of Potato Stillage/ Distiller's Slops
  • 2.2.1 Version for Continuous Biodegradation
  • 2.2.2 Version for Batch Biodegradation
  • 2.2.3 Comparison of Model Output and Experimental Data
  • 2.3 Modeling of Anaerobic Digestion (AD)
  • 2.3.1 Case Study 1: Anaerobic Treatment of Chicken Wastes
  • 2.3.1.1 Model Assumptions
  • 2.3.1.2 Main Reactions Assumed in the Model
  • 2.4 Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD)
  • 2.4.1 Mass Balance
  • 2.4.2 Energy Balance
  • 2.5 Modeling of Wastewater Treatment Plants (WWTPs)
  • 2.5.1 Steady-State Models of WWTPs
  • 3 Process Analytical Technology
  • 4 Control Strategy Development
  • 4.1 Fuzzy Logic Control
  • 4.2 Control Strategy Development for Food Wastes
  • 4.2.1 Supervisory Control Strategies
  • 4.2.2 Physiological State Classification Strategies
  • 4.2.3 Direct Control Strategies
  • 4.2.4 Development of the KBCS
  • 5 Conclusions
  • Acknowledgement
  • References
  • IV. Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater
  • 12 Accounting for the Impact of Food Waste on Water Resources and Climate Change
  • 1 Background
  • 2 Defining Water Footprints
  • 2.1 Defining Carbon Footprints
  • 3 Accounting Carbon Footprint
  • 3.1 Land Use Change
  • 4 Data
  • 5 Results of Water Footprint Accounting
  • 6 Results of Carbon Footprint Accounting
  • 7 Case Studies
  • Case A: Wheat
  • Case B: Tomato
  • Case C: Beef
  • 8 Discussion and Conclusion
  • Acknowledgement
  • References
  • 13 Electrical Energy from Wineries-A New Approach Using Microbial Fuel Cells
  • 1 Introduction
  • 2 Winery WasteWater to Electricity-Conceptual Approach
  • 3 Microbial Fuel Cells
  • 3.1 What is Special about Electrochemical Energy Conversion?
  • 3.2 Working Principle of MFCs
  • 3.3 Electrochemical and Bacterial Losses During Energy Conversion
  • 3.4 Electrochemical Techniques Generally Used in MFC Studies
  • 3.4.1 MFC Polarization Studies
  • 3.4.2 Electrode Polarization Techniques
  • 3.4.3 Current Interruption Technique
  • 3.4.4 Electrochemical Impedance Spectroscopy (EIS)
  • 3.4.5 Cyclic Voltammetry
  • 3.5 Basic Performance Parameters of MFCs
  • 3.6 Construction of MFCs
  • 3.6.1 Evolution of MFC Configurations and Designs
  • 4 Microbial Fuel Cells and Wineries-A Case Study
  • 5 Conclusions
  • References
  • 14 Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology
  • 1 Introduction
  • 2 Current Status of Electricity Generation from Food Industry Wastewaters
  • 3 Factors Affecting Anodic Performance
  • 3.1 Wastewater Properties
  • 3.2 Anodic Microbiology
  • 3.3 Reactor Design Parameters
  • 3.4 Operating Parameters
  • 4 Electricity Generation from a Scalable MFC-a Case Study
  • 4.1 MFC Setup and Characteristics
  • 4.2 Power Generation Performance
  • 5 Conclusion
  • Acknowledgements
  • References
  • V. Assessment of Environmental Impact of Food Production and Consumption
  • 15 Life Cycle Assessment Focusing on Food Industry Wastes
  • 1 Introduction
  • 2 Methodology in Life Cycle Assessment
  • 3 Utility of Lct/Lca to Promote Lower-Impact Habits in Consumers
  • 4 Valorization of Wastes by Bioprocessing, from an Lca Perspective
  • 4.1 Bioethanol
  • 4.2 Biodiesel
  • 4.3 Biogas
  • 4.4 Compost
  • 4.5 Other proposals
  • 5 Valorization of Wastes by NonBiological Processing or Disposal, from an Lca Perspective
  • 5.1 Recycling of Packaging Materials (Plastics, Metal, Glass, Paper)
  • 5.2 Recovery of Combustion Energy
  • 5.3 Additional Recovery Proposals
  • 5.4 Disposal in Landfills
  • 6 Conclusions
  • 7 Case Study: Lca of Waste Management in Cider Making
  • References
  • 16 Food System Sustainability and the Consumer
  • 1 Introduction
  • 2 Food Supply Chain and Waste
  • 3 Consumer Behavior and Behavioral Change
  • 4 New Product Development and Innovation
  • 5 Conclusions
  • References
  • Concluding Remarks and Future Prospects
  • 1 Prevention of Food Losses and Waste
  • 1.1 EU Measures to Reduce Food Industry Waste
  • 2 Challenges for the Processing Industry
  • 2.1 Product Discovery and Design
  • 2.2 Sustainability and Eco-Innovation
  • 2.3 A Nature-Inspired Engineering Approach
  • 3 Valorization of Food Industry Waste
  • 3.1 Dry Anaerobic Digestion
  • 3.2 Thermophilic Aerobic Bioremediation
  • 3.3 Hydrogen Production
  • 3.4 Fuel Cells
  • 3.5 Progress in Immobilization of Enzymes
  • 3.6 Sustainable Packaging
  • 3.7 Progress in Encapsulation
  • 4 Conclusions
  • References
  • Food Science and Technology International Series
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

117,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok