Developments in Surface Contamination and Cleaning, Vol. 1

Fundamentals and Applied Aspects
 
 
William Andrew (Verlag)
  • 2. Auflage
  • |
  • erschienen am 12. November 2015
  • |
  • 894 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-31270-7 (ISBN)
 

Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation.

Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination.

In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants.

The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specification in a multitude of industries such as aerospace, automotive, biomedical, defense, energy, manufacturing, microelectronics, optics and xerography.


  • Provides best-practice guidance for scientists and engineers engaged in surface cleaning or those who handle the consequences of surface contamination
  • Addresses the continuing trends of shrinking device size and contamination vulnerability in a range of industries as spearheaded by the semiconductor industry
  • Presents state-of-the-art survey information on precision cleaning and characterization methods as written by a team of world-class experts in the field
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 31,84 MB
978-0-323-31270-7 (9780323312707)
0323312705 (0323312705)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Developments in Surface Contamination and Cleaning: Fundamentals and Applied Aspects
  • Copyright
  • Contents
  • Preface
  • About the Editors
  • Contributors
  • Part I: Fundamentals
  • Chapter 1: The Physical Nature of Very, Very Small Particles and its Impact on their Behavior
  • 1.1. Introduction
  • 1.2. The Spectrum of Aerosol Particle Sizes
  • 1.3. Atoms and Molecules-Concepts and Dimensions
  • 1.4. The Model of a Gas
  • 1.5. Particles and Gas Molecules
  • 1.6. Particle Interactions
  • 1.6.1. Coagulation
  • 1.6.2. Homogeneous Nucleation
  • 1.6.3. Adsorption
  • 1.7. Nanoparticles as Molecular Clusters
  • 1.8. An Interaction Model for Nanometer-Sized Particles
  • 1.9. Concluding Remarks
  • References
  • Chapter 2: Transport and Deposition of Aerosol Particles
  • 2.1. Introduction
  • 2.2. Noncontinuum Considerations
  • 2.3. Lagrangian Particle Equation of Motion
  • 2.3.1. Fluid-Particle Drag Force
  • 2.3.1.1. Fluid-Drag Force: Assumptions and Practical Considerations
  • 2.3.1.1.1. Continuum Regime Limit
  • 2.3.1.1.2. Free Molecule Regime Limit
  • 2.3.2. Gravitational Force
  • 2.3.3. Thermophoretic Force
  • 2.3.3.1. Continuum Regime Limit
  • 2.3.3.2. Free Molecule Regime Limit
  • 2.3.4. Electrostatic Force
  • 2.4. Inertial Effects
  • 2.4.1. Nondimensionalization
  • 2.5. Drift Velocity
  • 2.5.1. Gravitational Drift Velocity
  • 2.5.2. Thermophoretic Drift Velocity
  • 2.5.3. Electric Drift Velocity
  • 2.6. Eulerian Formulation
  • 2.6.1. Particle Diffusion Coefficient
  • 2.6.2. Nondimensional Formulation
  • 2.7. Particle Transport and Deposition in a Parallel Plate Reactor
  • 2.7.1. Fluid Transport Equations
  • 2.7.1.1. Flow Field in the Showerhead Holes
  • 2.7.1.2. Fluid Transport Between Parallel Plates
  • 2.7.1.3. Summary: Fluid Flow Analysis for the Parallel Plate Geometry
  • 2.7.2. Particle Collection Efficiency
  • 2.7.3. Particles Entering Through the Showerhead
  • 2.7.3.1. External Force Limit
  • 2.7.4. Particle Traps/in Situ Nucleation
  • 2.7.4.1. Efficiency for the Lagrangian Formulation
  • 2.7.4.2. Efficiency for the Eulerian Formulation
  • 2.7.4.3. External Force Limit
  • 2.7.5. Diffusion-Enhanced Deposition from Traps or in Situ Nucleation
  • 2.7.5.1. Problem Definition
  • 2.7.5.2. Solution of the Eulerian Particle Transport Equation
  • 2.7.5.3. Particle Collection Efficiency
  • 2.7.5.4. Particle Flux
  • 2.7.6. Nondimensional Results
  • 2.7.6.1. Efficiency at Intermediate Peclet Numbers
  • 2.7.7. Dimensional Results
  • 2.7.7.1. Trap Height Effects
  • 2.7.7.2. Pressure Effects
  • 2.7.7.3. Mass Flow Rate Effects
  • 2.7.7.4. Effect of Thermophoresis
  • 2.7.8. Summary: Diffusion-Enhanced Deposition
  • 2.8. Inertia-Enhanced Deposition
  • 2.8.1. Particle Transport in the Showerhead Holes
  • 2.8.2. Particle Transport Between Parallel Plates
  • 2.8.2.1. Asymptotic Limit of Critical Stokes Number
  • 2.8.3. Coupled Transport-Nondimensional Results
  • 2.8.3.1. Critical Stokes Numbers
  • 2.8.3.2. Grand Design Curves
  • 2.8.3.3. External Forces
  • 2.8.3.4. Parabolic Profile
  • 2.8.4. Coupled Transport-Dimensional Results
  • 2.9. Chapter Summary and Practical Guidelines
  • Notes
  • References
  • Chapter 3: Relevance of Particle Transport in Surface Deposition and Cleaning
  • 3.1. Introduction
  • 3.2. Particle-solid Surface Interactions
  • 3.3. Dry Deposition
  • 3.4. Thermophoresis and Its Relevance in Surface Cleaning
  • 3.5. Electrostatic Force and Its Relevance in Surface Cleaning
  • 3.6. Dielectrophoresis and Its Relevance in Surface Cleaning
  • 3.7. Abrasive Erosion and Its Relevance in Surface Cleaning
  • 3.8. Summary
  • References
  • Chapter 4: Aspects of Particle Adhesion and Removal
  • 4.1. Introduction
  • 4.2. Interactions Giving Rise to Particle Adhesion
  • 4.3. Mechanics of Particle Adhesion
  • 4.4. Factors Affecting Particle Adhesion
  • 4.5. Methods of Measuring the Adhesion of Particles to Substrates
  • 4.6. Summary and Conclusions
  • References
  • Chapter 5: Tribological Implication of Particles
  • 5.1. Introduction
  • 5.2. Micro-Site for Generation of Wear Particles
  • 5.3. Wear Modes and Particles
  • 5.3.1. Adhesive Transfer of Atoms in Contact and Separation
  • 5.3.2. Adhesive Transfer of Flake-Like Particles in Sliding Contact
  • 5.3.3. Cutting and Generation of Fine Feather-Like Particles in Abrasive Sliding
  • 5.3.4. Surface Plastic Flow and Thin Filmy Wear Particle Generation by Repeated Sliding Contact
  • 5.3.5. Crack Initiation and Propagation in the Subsurface of the Contact Region and Generation of a Flake-Like Particle b...
  • 5.3.6. Tribo-Oxidation and Generation of Oxide Particles by Repeated Contacts in Air and Water
  • 5.3.7. Wear Particles Generated in Sliding of Steels in Oil with Additives
  • 5.4. Wear Rate and Number of Wear Particles
  • 5.5. Size and Number of Wear Particles by Sliding
  • 5.6. Concluding Remarks
  • 5.6.1. Solid Wear Particles
  • 5.6.2. Generation of Gas Molecules by Wear
  • 5.6.3. Triboemission of Electrons, Ions, Photons, and Particles
  • Acknowledgments
  • References
  • Chapter 6: ESD Controls in Cleanroom Environments: Relevance to Particle Deposition
  • 6.1. Introduction
  • 6.2. Electrostatic Charge Problems in Cleanrooms
  • 6.3. Static Charge Generation
  • 6.4. Insulators Versus Conductors
  • 6.5. Cleanroom Electrostatic Management
  • 6.6. Air Ionization for Static Charge Control
  • 6.6.1. Corona Ionization
  • 6.6.1.1. AC Ionizer
  • 6.6.1.2. DC Ionizer
  • 6.6.2. Photoelectric Ionization
  • 6.6.3. Radioisotope Ionization
  • 6.6.4. Measuring Ionizer Performance
  • 6.7. Air Ionizer Applications
  • 6.7.1. Discharge in Process Tools
  • 6.7.2. Flow Benches and Work Surfaces
  • 6.8. Conclusions
  • References
  • Chapter 7: Airborne Molecular Contamination
  • 7.1. Introduction
  • 7.1.1. Background
  • 7.1.2. Changes in Semiconductor Integration
  • 7.1.3. Changes in Target Contaminant
  • 7.2. Definitions, Types, and Sources of AMCs
  • 7.2.1. Definition of ``Airborne Molecular Contamination´´
  • 7.2.2. Examples of AMC-Induced Problems in the Manufacturing Process
  • 7.2.3. Nature of AMC-Induced Effects
  • 7.2.4. Classification of Airborne Molecular Contaminants
  • 7.2.4.1. SEMATECH Technology Transfer Report No. 95052812A-TR
  • 7.2.4.2. International Technology Roadmap for Semiconductor (ITRS) 1999
  • 7.3. Analysis Methods
  • 7.3.1. Substrate Surface Analysis
  • 7.3.1.1. Quantitative Analysis
  • 7.3.1.1.1. Solvent washing method
  • 7.3.1.1.2. Wafer thermal desorption-gas chromatography/mass spectrometry (WTD-GC/MS)
  • 7.3.1.2. Surface (Instrumental) Analysis
  • 7.3.2. Air Analysis
  • 7.3.2.1. Acids80-84
  • 7.3.2.2. Bases: Ammonia (NH3) and Amines
  • 7.3.2.3. Condensables: Organic Compounds
  • 7.3.2.3.1. Siloxanes
  • 7.3.2.3.2. Ester phthalates
  • 7.3.2.3.3. Ester phosphates
  • 7.3.2.4. Dopants: Boron, Phosphorus, and Metals
  • 7.3.3. Outgassing Evaluation Method for Construction Materials
  • 7.3.3.1. IEST WG 03125,99
  • 7.3.3.1.1. Screening Test Method
  • 7.3.3.1.2. Engineering Test Method
  • 7.3.3.2. JACA 34-1999100-103
  • 7.3.3.2.1. Static Headspace Method
  • 7.3.3.2.2. Dynamic Headspace: Screening Test Method
  • 7.3.3.2.3. Dynamic Headspace: Engineering Test Method
  • 7.3.3.2.4. Substrate Surface Absorption: Thermal Desorption Test Method
  • 7.3.3.2.5. Onsite Measuring Method
  • 7.4. Nature of Airborne Molecular Contamination and Its Effects
  • 7.4.1. Investigation of the Properties of AMCs
  • 7.4.1.1. Effects of Rinsing the Outdoor Air
  • 7.4.1.2. Acids
  • 7.4.1.3. Bases
  • 7.4.1.3.1. NH3
  • 7.4.1.3.2. HMDS
  • 7.4.1.3.3. Amino Alcohol
  • 7.4.1.4. Condensables: Siloxanes, Phthalates, Phosphates, and Other Organic Compounds
  • 7.4.1.4.1. Siloxanes
  • 7.4.1.4.2. Ester phthalates
  • 7.4.1.4.3. Ester phosphates
  • 7.4.1.4.4. Dopants: boron and phosphorus compounds
  • 7.4.1.4.4.1. Sources of boron generation
  • 7.4.1.4.4.2. Sources of phosphorus generation
  • 7.4.1.4.5. Other contaminants
  • 7.4.2. Examples of Problems Caused by AMC Contamination
  • 7.4.2.1. General
  • 7.4.2.2. Effects of Ammonia
  • 7.4.2.3. Effects of Siloxanes
  • 7.4.2.4. Effects of HMDS
  • 7.4.3. Chemistry of AMCs
  • 7.4.3.1. Monolayer and Sub-Monolayer Contamination
  • 7.4.3.2. Clausius-Clapeyron Relation
  • 7.4.3.3. Outgassing Phenomenon: Two-Phase Exponential Model of Vaporization and Diffusion of Contaminants
  • 7.4.3.4. Sticking Probability, Sticking Coefficient, and Staying Tendency
  • 7.4.3.4.1. Sticking probability163
  • 7.4.3.4.2. Sticking Coefficient
  • 7.4.3.4.3. Staying Tendency
  • 7.4.3.4.4. Fruit-Basket Phenomenon
  • 7.4.3.4.5. Carbonization Phenomenon
  • 7.4.3.5. Investigation of Contamination Based on the ``Organic Conceptual Diagram´´186-189
  • 7.5. Examples of Application of Knowledge and Technology
  • 7.5.1. Excursion of AMCs
  • 7.5.1.1. Data Analysis
  • 7.5.1.2. Investigation of Contaminant Sources in Cleanroom
  • 7.5.2. Selection of Construction Materials with Fewer AMC Contaminant Sources
  • 7.5.3. Chemical Filter for Air Cleaning
  • 7.5.3.1. Change of Total Organic Concentration with Time
  • 7.5.3.2. Change of Siloxanes Concentration in Cleanroom Air
  • 7.5.3.3. Effect of Chemical Filter
  • 7.5.3.4. Published Reports on Removal Mechanisms
  • 7.5.3.5. Other Issues
  • 7.5.4. Removal from the Substrate Surface (Carbon Chemistry)
  • 7.5.4.1. Cleaning Technology using UV Photoelectron with Catalyst
  • 7.5.4.2. Other Cleaning Technology
  • 7.5.5. Monitoring Systems
  • 7.5.6. Recent Developments
  • 7.5.6.1. Cleanliness Requirements for Si Wafer
  • 7.5.6.1.1. Cleanliness
  • 7.5.6.1.2. Analysis
  • 7.5.6.1.3. Required Cleanliness
  • 7.5.6.1.4. Air
  • 7.5.6.2. Trends in Standardization
  • 7.5.6.2.1. Representation of Cleanliness
  • 7.5.6.2.2. Analytical Methods
  • 7.5.6.3. New Analytical Techniques
  • 7.5.6.4. Achieving Cleanroom Cleanliness at Low AMCs Level (DOP 0.1ng/m3)
  • 7.6. Future Directions
  • 7.6.1. Technology for Cleanliness of AMCs
  • 7.6.2. Advances in Analytical Methods
  • 7.6.3. Application of Air Cleanliness Technology to Various Fields
  • 7.6.3.1. Sick House Syndrome
  • 7.6.3.2. Endocrine Disrupters
  • 7.6.3.3. Cleanliness of Experiment and Analysis Environments
  • 7.6.3.4. Other Applications
  • 7.6.4. Contribution of the Analyst/Chemist to Troubleshooting
  • 7.7. Summary of the Chapter
  • Acknowledgments
  • Notes
  • References
  • Part II: Characterization
  • Chapter 8: Surface Analysis Methods for Contaminant Identification
  • 8.1. Introduction
  • 8.2. Auger Electron Spectroscopy
  • 8.2.1. Background of AES
  • 8.2.2. Basic Principles of AES
  • 8.2.3. AES Instrumentation
  • 8.2.4. Applications of AES for Characterizing Surface Contaminants
  • 8.2.5. Recent Developments and Future Directions of AES
  • 8.3. X-Ray Photoelectron Spectroscopy
  • 8.3.1. Background of XPS
  • 8.3.2. Basic Principles of XPS
  • 8.3.3. XPS Instrumentation
  • 8.3.4. Applications of XPS for Characterizing Surface Contaminants
  • 8.3.5. Recent Developments and Future Directions of XPS
  • 8.4. Time-of-Flight Secondary Ion Mass Spectrometry
  • 8.4.1. Background of TOF-SIMS
  • 8.4.2. Basic Principles of TOF-SIMS
  • 8.4.3. TOF-SIMS Instrumentation
  • 8.4.4. Applications of TOF-SIMS for Characterizing Surface Contaminants
  • 8.4.5. Recent Developments and Future Directions of TOF-SIMS
  • 8.5. Low-Energy Ion Scattering
  • 8.5.1. Background of LEIS
  • 8.5.2. Basic Principles of LEIS
  • 8.5.3. LEIS Instrumentation
  • 8.5.4. Applications of LEIS for Characterizing Surface Contaminants
  • 8.5.5. Recent Developments and Future Directions of LEIS
  • 8.6. Summary
  • Note
  • References
  • Chapter 9: Electron Microscopy Techniques for Imaging and Analysis of Nanoparticles
  • 9.1. Scanning Electron Microscopy
  • 9.1.1. Instrumentation
  • 9.1.1.1. Environmental Scanning Electron Microscope
  • 9.1.2. Signals produced by the SEM
  • 9.1.2.1. Imaging
  • 9.1.2.1.1. Backscattered Electron Imaging and Secondary Electron Imaging
  • 9.1.2.1.2. Low-Voltage Imaging
  • 9.1.2.2. Composition Analysis
  • 9.1.2.2.1. X-Rays
  • 9.1.2.2.2. Auger Electrons
  • 9.2. High-resolution Transmission Electron Microscopy
  • 9.2.1. Main Components of a Transmission Electron Microscope
  • 9.2.2. The Physics for Atomic Resolution Lattice Imaging
  • 9.2.2.1. Phase Contrast Imaging
  • 9.2.2.2. Image Formation
  • 9.2.2.3. Image Interpretation of Very Thin Samples
  • 9.2.2.4. Dynamic Theory and Image Simulation
  • 9.3. Shapes of Nanocrystals
  • 9.3.1. Polyhedral Shapes
  • 9.3.2. Twining Structure and Stacking Faults
  • 9.3.3. Multiply Twinned Particles-Decahedron and Icosahedron
  • 9.4. Nanodiffraction
  • 9.4.1. Optics for Nanodiffraction
  • 9.4.2. Experimental Procedure to Obtain a Nanodiffraction Pattern
  • 9.5. Scanning Transmission Electron Microscopy
  • 9.5.1. Instrumentation
  • 9.5.2. Imaging Modes
  • 9.5.3. Composition-Sensitive Imaging
  • 9.5.4. Nanoscale Microanalysis
  • 9.6. In-situ TEM and Nanomeasurements
  • 9.6.1. Thermodynamic Properties of Nanocrystals
  • 9.7. Electron Energy-loss Spectroscopy of Nanoparticles
  • 9.7.1. Quantitative Nanoanalysis
  • 9.7.2. Near Edge Fine Structure and Bonding in Transition Metal Oxides
  • 9.8. Energy Dispersive X-ray Microanalysis (EDS)
  • 9.9. Summary
  • References
  • Chapter 10: Wettability Techniques to Monitor the Cleanliness of Surfaces
  • 10.1. Background and Introduction
  • 10.2. Fundamentals
  • 10.3. Theoretical and Experimental Investigations
  • 10.4. Instrumentation
  • 10.5. Examples of Applications
  • 10.6. Recent Developments
  • 10.7. Future Directions
  • 10.8. Summary
  • References
  • Part III: Techniques for Removal of Surface Contamination
  • Chapter 11: Cleaning with Solvents
  • 11.1. Introduction
  • 11.2. Environmental and Regulatory Issues
  • 11.2.1. Ozone-Depleting Solvents (Chemicals)
  • 11.2.1.1. Regulation of Ozone-Depleting Chemicals
  • 11.2.2. Reactions of Ozone Depletion in the Stratosphere
  • 11.2.3. VOC Solvents
  • 11.2.3.1. Definition of a VOC
  • 11.2.3.2. Definition of VOC Exempt
  • 11.2.3.3. Reactions Leading to Smog Formation
  • 11.2.3.4. Smog Formed from VOCs
  • 11.2.4. Global Warming
  • 11.2.4.1. Regulation of Solvent Cleaning Because of Global Warming
  • 11.2.4.2. Specific Regulations Affecting Solvent Cleaning
  • 11.2.5. Relationship of Solvent Characteristics ODP, VOC, and GWP
  • 11.3. Potential Health Consequences of Solvent Use in Cleaning
  • 11.3.1. Flammability Issues
  • 11.3.1.1. Flash Point
  • 11.3.1.1.1. Flash Point Test Equipment
  • 11.3.1.1.2. Regulatory Requirements Related to Flash Point
  • 11.3.1.1.3. Flash Point Data
  • 11.3.1.2. Combustion
  • 11.3.1.2.1. Flammability Limits
  • 11.3.1.2.2. Flammability Limits vs. Flash Point
  • 11.3.1.2.3. Flammability Test Equipment
  • 11.3.1.2.4. Summary of Flammability Limits
  • 11.3.1.3. Static Discharge
  • 11.3.1.4. Procedures Recommended to Avoid Fires
  • 11.3.1.5. Body Contact
  • 11.3.1.5.1. Routes of Entry
  • 11.3.1.5.2. Inhalation
  • 11.3.1.5.2.1. Effects of Solvent Inhalation
  • 11.3.1.5.3. Ingestion
  • 11.3.1.5.3.1. Effects of Solvent Ingestion
  • 11.3.1.6. Skin Contact
  • 11.3.1.6.1. Effect of Solvents on Human Skin
  • 11.3.1.7. Carcinogenicity
  • 11.3.1.8. Protection from Hazards
  • 11.3.1.8.1. Becoming Informed
  • 11.3.1.8.1.1. MSDS
  • 11.3.1.8.1.2. Required Content
  • 11.3.1.8.1.3. Required Use
  • 11.3.1.8.1.4. The Problem with MSDSs
  • 11.3.1.8.1.5. The Situation for Manufacturers
  • 11.3.1.8.2. Sources of Information
  • 11.3.1.8.3. Communication of Information
  • 11.3.1.9. Taking Action
  • 11.3.1.10. Legal or Regulatory Hazards
  • 11.3.1.11. Economic Hazards
  • 11.4. Solvent Selection via Solubility Parameters
  • 11.4.1. Background
  • 11.4.2. The Kauri Butanol Test
  • 11.4.3. The Hildebrand Solubility Parameter
  • 11.4.3.1. A One-Dimensional Solubility Parameter
  • 11.4.3.2. Molecular Forces
  • 11.4.4. Hansen Solubility Parameter
  • 11.4.4.1. Solvent Substitution with HSP
  • 11.4.4.1.1. HSP Data
  • 11.4.5. Solvent Substitution
  • 11.4.5.1. Multiple Components
  • 11.4.5.2. HSP Data and Calculations
  • 11.5. Choosing Cleaning Solvents and Cleaning Processes
  • 11.5.1. Choices of Solvents
  • 11.5.1.1. Chemical Structure and Atomic Composition
  • 11.5.1.2. Technical Data
  • 11.5.2. Cleaning/Rinsing/Drying Processes
  • 11.5.2.1. Solvent Cleaning Processes
  • 11.5.2.1.1. Design Features of Solvent Cleaning Processes
  • 11.5.2.2. Rinsing Processes
  • 11.5.2.3. Drying Processes
  • 11.5.2.4. Design Features for Environmental Control
  • 11.5.2.5. Multiple-stage Processes
  • 11.5.2.6. Selection of Design Features
  • 11.6. Control of Quality in Solvent Cleaning
  • 11.7. Avoiding Common Mistakes
  • 11.8. The Future of Solvents and Cleaning
  • 11.8.1. Customer Preferences
  • 11.8.2. Environmental Regulations
  • 11.8.3. Innovation
  • 11.8.3.1. Business Innovation
  • 11.8.3.2. Technical Innovation
  • 11.8.3.3. Regulatory Innovation
  • References
  • Chapter 12: Removal of Particles by Chemical Cleaning
  • 12.1. Introduction
  • 12.2. Particle/Surface Interactions
  • 12.2.1. van der Waals Force
  • 12.2.2. Electrostatic Force
  • 12.2.3. Hydrodynamic Force
  • 12.3. Process Applications and Chemistries
  • 12.3.1. Particle Challenge Wafer Preparation
  • 12.3.2. dHF Clean
  • 12.3.3. SC-1 Clean
  • 12.3.4. Single-Step Clean
  • 12.4. Summary
  • References
  • Chapter 13: The Use of Surfactants to Enhance Particle Removal from Surfaces
  • 13.1. Introduction
  • 13.1.1. Industrial Perspective
  • 13.1.2. Historical Perspective
  • 13.2. Surfactant Behavior in Solution
  • 13.3. Interfacial Forces and Particle Removal
  • 13.3.1. Introduction to Interfacial Forces
  • 13.3.2. Measurement of Surface Forces
  • 13.3.3. Adhesion
  • 13.3.4. Particle Removal Forces
  • 13.3.5. Modification of Surface Forces Using Surfactants
  • 13.3.6. Measurement of Particle Removal
  • 13.3.7. Enhanced Particle Removal Results Associated with Surfactant Use
  • 13.3.8. Post-Cleaning Surfactant Removal
  • 13.3.9. Selection of Surfactants for Cleaning Purposes
  • 13.3.10. Mathematical Modeling of Enhanced Particle Removal Using Surfactants
  • 13.4. Summary
  • References
  • Chapter 14: Microabrasive Technology for Precision Cleaning and Processing
  • 14.1. Introduction
  • 14.2. Surface Contamination and Surface Cleanliness Levels
  • 14.3. Fundamental Considerations
  • 14.3.1. Removal of Surface Films and Coatings
  • 14.3.1.1. Removal by Mechanical Erosion
  • 14.3.1.2. Removal by Delamination
  • 14.3.2. Removal of Particles
  • 14.4. Microabrasive Technology
  • 14.4.1. Description of the Process
  • 14.4.2. System Description
  • 14.4.3. Nozzle Materials and Design
  • 14.4.4. Types of Abrasives
  • 14.4.4.1. Selection of the Abrasive
  • 14.4.4.2. Abrasive Quality
  • 14.4.5. Air Treatment
  • 14.4.5.1. Air Drying
  • 14.4.6. Oil Contamination
  • 14.4.7. Dust Collection
  • 14.4.8. Recycling and Secondary Waste
  • 14.4.9. Static Charging
  • 14.5. Cleaning and Processing Systems
  • 14.6. Cost Considerations
  • 14.7. Advantages and Disadvantages
  • 14.7.1. Advantages
  • 14.7.2. Disadvantages
  • 14.8. Applications
  • 14.8.1. Removal of Coatings
  • 14.8.2. Etching Microfluidic Devices
  • 14.8.3. Dental Applications
  • 14.8.4. Deburring of Machined Components
  • 14.8.5. Medical Device Processing
  • 14.8.6. Fabrication of Complex Three-Dimensional Structures
  • 14.8.7. Cutting Brittle Materials
  • 14.8.8. Miscellaneous Applications
  • 14.9. Summary and Conclusions
  • Acknowledgment
  • References
  • Chapter 15: Cleaning Using High-Speed Impinging Jet
  • 15.1. Introduction
  • 15.2. Fundamentals of Air Jet Removal
  • 15.2.1. Apparatus and Parameters3,4
  • 15.2.2. Definition of Removal Efficiency
  • 15.2.3. Effect of Operating Conditions on the Removal Efficiency ?
  • 15.2.3.1. Pressure Drop ?Pn and Distance d4
  • 15.2.3.2. Impinging Angle ?3,7
  • 15.2.4. Condition of the Environment10,11
  • 15.3. New Removal Methods Using the Air Jet Method
  • 15.3.1. Pre-Charging Method13
  • 15.3.2. Vibrating Air Jet Method13
  • 15.3.3. Other Removal Methods
  • 15.4. Remaining Problems
  • 15.5. Summary
  • References
  • Chapter 16: Carbon Dioxide Snow Cleaning
  • 16.1. Introduction
  • 16.2. CO2 Snow Cleaning-Background
  • 16.2.1. Initial Investigations
  • 16.2.2. Thermodynamics
  • 16.2.3. Cleaning Mechanisms
  • 16.3. Equipment and Process Control
  • 16.3.1. Nozzles
  • 16.3.2. Equipment Needs and Cleaning Issues
  • 16.3.2.1. Surface Cooling
  • 16.3.2.2. Static Control
  • 16.3.2.3. CO2 Purity
  • 16.3.2.4. Equipment
  • 16.3.2.5. Methods and Work Space
  • 16.3.2.6. Surface Damage
  • 16.4. Applications
  • 16.4.1. Materials
  • 16.4.2. Analytical Sciences and Surface Science
  • 16.4.3. Vacuum and Thin-Film Technologies
  • 16.4.4. Optics
  • 16.4.4.1. Telescope
  • 16.4.5. Wafers, Semiconductor Processing, Hard-Disk Assemblies
  • 16.4.6. Other Applications
  • 16.4.6.1. Art and Artifact Cleaning
  • 16.4.6.2. Biofouling
  • 16.4.6.3. Cooling and Cleaning
  • 16.4.6.4. Additives
  • 16.4.6.5. Plastic Parts
  • 16.4.6.6. Bedbugs
  • 16.5. Cleaning Comparisons
  • 16.6. Summary and Conclusions
  • References
  • Chapter 17: Cleaning Using Argon/Nitrogen Cryogenic Aerosols
  • 17.1. Introduction
  • 17.2. Aerosol Jet Cleaning Mechanisms
  • 17.2.1. Adhesion and Hydrodynamic Forces
  • 17.2.2. Particle Collision
  • 17.3. Production of Argon/Nitrogen Cryogenic Aerosol Jets
  • 17.3.1. Equipment Requirements
  • 17.3.2. Operating Conditions
  • 17.3.3. Cleaning Systems
  • 17.4. Cost
  • 17.5. Effectiveness and Applications
  • 17.5.1. Kinetics of Cleaning
  • 17.5.2. Cleaning Performance
  • 17.5.3. Applications
  • 17.6. Future Directions
  • Notes
  • References
  • Chapter 18: Coatings for Prevention or Deactivation of Biological Contaminants
  • 18.1. Introduction
  • 18.2. Biological Contaminations
  • 18.3. Means of Contamination
  • 18.4. General Requirements for Self-cleaning Coatings
  • 18.5. Laboratory Tests for Antimicrobial Activity of Coatings
  • 18.6. Agents Against Biological Contaminations
  • 18.7. Coating Methods
  • 18.7.1. Brush, Pad, and Roll Coating
  • 18.7.2. Dip and Flow Coatings
  • 18.7.3. Spin Coating
  • 18.7.4. Spray Application
  • 18.7.5. Electroplating
  • 18.7.6. Electroless Plating
  • 18.7.7. Sputtering
  • 18.7.8. Physical Vapor Deposition
  • 18.7.9. Chemical Vapor Deposition
  • 18.7.10. Surface Modification
  • 18.8. Non-adhesive Coatings
  • 18.8.1. Coatings with Hydrophilic Polymers and Hydrogels
  • 18.8.2. Ultrahydrophobic Coatings
  • 18.8.3. Influence of Surface Net Charge on Microbial Adhesion
  • 18.8.4. Proteins
  • 18.9. Microbe Killing or Growth Inhibiting Coatings
  • 18.9.1. Release Systems
  • 18.9.1.1. Diffusion Systems
  • 18.9.1.1.1. Chemical or Physico-Chemical Surface Modification prior to Impregnation
  • 18.9.1.1.2. Loading the Coating Material
  • 18.9.1.1.3. Use of Sparingly Soluble Drugs
  • 18.9.1.1.4. Coating After Impregnation
  • 18.9.1.1.5. Complexes
  • 18.9.1.1.6. Additives
  • 18.9.1.1.7. Release by Hydrolyzing Labile Bonds
  • 18.9.1.1.8. Biodegradable Systems
  • 18.9.1.1.9. Biological Release Systems
  • 18.9.1.1.10. Coatings that Release on Microbial Contact
  • 18.9.2. Contact Active Antimicrobial Surfaces
  • 18.9.2.1. Chemical Action
  • 18.9.2.2. Physicochemical Action
  • 18.10. Metal Coatings
  • 18.11. Antifouling Paints
  • 18.12. Antimicrobial Surfaces with Multiple Action
  • 18.13. Antiviral Coatings
  • 18.14. Surface Cleaning by Coating
  • 18.15. Application Examples
  • 18.15.1. Biomedical Applications
  • 18.15.2. Food Protection
  • 18.15.3. Textiles
  • 18.15.4. Daily Life Products
  • 18.15.5. Construction and Ships
  • 18.16. Future Developments
  • References
  • Chapter 19: A Detailed Study of Semiconductor Wafer Drying
  • 19.1. Introduction
  • 19.1.1. Scope
  • 19.1.2. Approach Followed in this Work
  • 19.1.3. Drying Techniques Commonly Used in Semiconductor Manufacturing
  • 19.1.3.1. Spin Drying
  • 19.1.3.2. Surface Tension Gradient (Marangoni) Based Drying
  • 19.1.3.2.1. The Marangoni Effect
  • 19.1.3.2.2. Vertical Marangoni-Based Drying of Silicon Wafers
  • 19.1.3.2.3. Marangoni-Based Drying of a Horizontally Rotating Wafer
  • 19.2. Theoretical Background
  • 19.2.1. Stability of Wetting Films on Silica
  • 19.2.1.1. Surface Forces
  • 19.2.1.2. Disjoining Pressure
  • 19.2.1.3. Importance of Short Range Repulsive Interactions
  • 19.2.1.3.1. Aqueous Films
  • 19.2.1.3.2. Alcohol Films
  • 19.2.2. Adsorption of Ions on Silica Surfaces
  • 19.2.2.1. Structure of the Silica-Water Interface
  • 19.2.2.2. Interaction Between Metal Cations and a Silica Surface
  • 19.2.2.2.1. Ion Exchange Model
  • 19.2.2.2.2. Effect of pH
  • 19.2.2.2.3. Maximum Surface Concentration
  • 19.2.3. Literature Models Describing Wafer Drying
  • 19.2.3.1. Spin Drying
  • 19.2.3.1.1. Model for a Non-Volatile Liquid
  • 19.2.3.1.2. Model for a Volatile Liquid
  • 19.2.3.1.3. Film Uniformity
  • 19.2.3.2. Vertical Marangoni-Based Wafer Drying
  • 19.2.3.3. Applicability of the Model for Vertical Drying to a Rotating Wafer System
  • 19.2.3.4. Limitations of the Model for Marangoni-Based Drying
  • 19.2.3.4.1. Surface Tension Gradient
  • 19.2.3.4.2. Surface Forces
  • 19.2.4. Salt Tracer Tests
  • 19.2.4.1. Interpretation of Salt Tracer Tests
  • 19.2.4.2. Available Literature Data
  • 19.2.4.2.1. Spin Drying
  • 19.2.4.2.2. Marangoni-Based Drying
  • 19.3. Experimental Details
  • 19.3.1. Setups for Wafer Drying
  • 19.3.1.1. Spin Drying
  • 19.3.1.1.1. Manual Spinner
  • 19.3.1.1.2. Semi-Automated Spinner
  • 19.3.1.2. Vertical Marangoni-Based Drying
  • 19.3.1.2.1. Batch Marangoni-Based Dryer
  • 19.3.1.2.2. Single Wafer Marangoni-Based Dryer
  • 19.3.1.3. Marangoni-Based Drying of Horizontally Rotating Wafer
  • 19.3.1.3.1. Manual Tool
  • 19.3.1.3.2. Semi-Automated Tool
  • 19.3.2. Analytical Techniques
  • 19.3.2.1. Metal Surface Concentration by TXRF
  • 19.3.2.1.1. Technique
  • 19.3.2.1.2. Sources of Error
  • 19.3.2.2. Surface Tension by Wilhelmy Plate Method
  • 19.3.3. Characterization of Materials and Products
  • 19.3.3.1. Wafers
  • 19.3.3.2. Liquid Chemicals
  • 19.3.3.3. Metal Salts
  • 19.3.4. Procedure for the Salt Tracer Tests
  • 19.3.4.1. Spin Drying
  • 19.3.4.2. Vertical Marangoni-Based Drying
  • 19.3.4.3. Marangoni-Based Drying on a Rotating Wafer
  • 19.4. Results of Salt Tracer Tests
  • 19.4.1. Spin Drying
  • 19.4.1.1. Spin-Off vs. Evaporation
  • 19.4.1.2. Uniformity of the Evaporated Film
  • 19.4.1.3. Effect of the Rotation Speed on Evaporation
  • 19.4.1.4. Investigation of Adsorption
  • 19.4.2. Vertical Marangoni-Based Drying
  • 19.4.2.1. Histogram of Salt Test Results
  • 19.4.2.2. Effect of IPA Flow Rate
  • 19.4.2.3. Effect of Withdrawal Speed
  • 19.4.3. Marangoni-Based Drying on a Rotating Wafer
  • 19.4.3.1. Effect of Liquid Dispensation During Drying
  • 19.4.3.2. Effect of Nozzle Speed
  • 19.4.3.3. Effect of Liquid Surface Tension
  • 19.4.3.4. Investigation of Adsorption
  • 19.5. Discussion of Experimental Data
  • 19.5.1. Spin Drying
  • 19.5.1.1. Spin-Off vs. Evaporation
  • 19.5.1.2. Effect of High Rotation Speeds
  • 19.5.1.3. Wafer Topography and Surface Heterogeneity
  • 19.5.2. Marangoni-Based Drying
  • 19.5.2.1. Limits to the Use of Salt Tests
  • 19.5.2.2. Mean Surface Tension Gradient for Marangoni-Based Drying
  • 19.5.2.3. Drying Speed
  • 19.5.2.4. Wafer Topography and Surface Heterogeneity
  • 19.5.2.5. Alternatives to IPA as a Suitable Tensioactive Component
  • 19.5.2.6. Residues of Organic Species After Marangoni-Based Drying
  • 19.6. Summary and Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

315,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok