Photons Nonlinear Optics

 
 
Routledge (Verlag)
  • erschienen am 27. April 2018
  • |
  • 438 Seiten
 
E-Book | PDF ohne DRM | Systemvoraussetzungen
978-1-351-42482-0 (ISBN)
 
This book provides an introduction to quantum optics for experimental physicists and for college students who have studied quantum mechanics. Its distinguishing feature is its emphasis on multimode fields with correlating different-frequency modes, notably on their phenomenological description and on the practical methods of generating them. The phenomena described in this book provide an opportunity to study nonrelativistic quantum electrodynamics and to master many important concepts of theoretical physics.
  • Englisch
  • Boca Raton
  • |
  • USA
Taylor & Francis Ltd
  • Für höhere Schule und Studium
978-1-351-42482-0 (9781351424820)
weitere Ausgaben werden ermittelt
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • List of Notation
  • CHAPTER 1: INTRODUCTION
  • 1.1 Parametric Scattering
  • The Spectrum of Parametric Scattering
  • Coherent Scattering
  • Zero Fluctuations of the Vacuum
  • The Effective Temperature of Parametric Scattering
  • The Number of Photons per Mode and the Brightness of Light
  • The Brightness of Parametric Scattering
  • Parametric Superluminescence
  • Tuning Curves
  • Integral Intensities of Parametric Scattering
  • 1.2 Scattering by Polaritons
  • Polaritons and the Dispersion Law
  • Comparison of Parametric Scattering and Scattering by Polaritons
  • The Intensity of Scattering by Polaritons
  • The Frequency-Angular Spectrum of Scattering by Polaritons
  • Normal and Anomalous Dispersion
  • The Linearization Effect
  • 1.3 Four-Photon Scattering and Nonlinear Spectroscopy
  • Hyperparametric Scattering
  • Cascade Hyperparametric
  • Hyper-Raman Scattering
  • Biphoton Radiation in Raman Scattering
  • Resonance Fluorescence
  • Two-Photon Resonace Luminescence
  • Nonlinear Spectroscopy
  • 1.4 The Basic Concepts of Statistical Optics
  • The Analytic Signal
  • Random Intensity
  • Correlation Functions
  • Temporal Coherence
  • Spatial Coherence
  • Coherence Volume and the Degeneracy Factor
  • Photocount Statistics. Mandel's Formula
  • Photo Bunching
  • The Correlation of Intensities
  • 1.5 Multiphoton Effects: A Historic and Bibliographic Outline
  • The Stone (Pre-Laser) Age
  • The Laser Age
  • Three-Photon Parametric Scattering
  • Other Types of Scattering
  • Hyperparametric Scattering
  • Quantum Optics
  • CHAPTER 2: SOME INFORMATION ON QUANTUM MECHANICS AND STATISTICAL PHYSICS
  • 2.1 Passing from a Classical Description to a Quantum Description
  • The Quantization of the equations of Motion
  • Choice of representation
  • Comparison of Theory and Experiment
  • The Experimental Procedure
  • 2.2 The Dirac Notation and the Geometric Interpretation of Quantum Mechanics
  • Functions as Vectors
  • The Transformation of Functions and Tensors
  • Unity Decomposition
  • Various Representations
  • Unitary Transformations
  • The Connection with Physics
  • Time as a Parameter
  • Quantum Correlation Functions
  • Mixed States and the Density Matrix
  • 2.3 The Interaction Representation and Perturbation Theory The Interaction Representation
  • Other Representations
  • Perturbation Theory for the Scattering Operator
  • Transition Probability
  • The Rate of Transition
  • 2.4 Fluctuation-Dissipation Theorems
  • The Linear Fluctuation-Dissipation Theorem
  • The Spectral Form
  • The Symmetry of Moments and Susceptibilities
  • The Quadratic FDT
  • The Approximate Cubic FDT
  • 2.5 Relaxation and Kinetic Equations
  • The Kinetic Equation for the Density matrix
  • The Kinetic Equations for Mean Values
  • The Kinetic Equations for Populations
  • Spontaneous and Stimulated Transitions
  • CHAPTER 3: THE PRINCIPLES OF QUANTUM OPTICS
  • 3.1 Canonical Variables of the Electromagnetic Field
  • Dynamical Equations of the Field
  • The Spatial Fourier Transform of the Field
  • Canonical Variables of the Field
  • Canonical Equations of the Field and Green Function
  • The Role of the Dimensions of the Quantization Box
  • 3.2 Quantization of the Electromagnetic Field
  • The Field Hamiltonian
  • Commutators of Field Operators
  • The Free Field
  • Decomposition of Field Operators into Fourier's Frequency Integral
  • 3.3 Possible States of the Field
  • Energy and Coherent States
  • The Multimode Field
  • The Properties of Basis States
  • Mixed States
  • The Characteristic Function
  • The Dynamics of Field States
  • The Scattering Matrix of the Field
  • Coordinate, Momentum, and Squeezed States
  • 3.4 Photon and Photoelectric Statistics
  • Photon Statistics
  • Photon Bunching and Antibunching
  • Photoelectron Statistics
  • 3.5 The Atom-Quantized Field Interaction
  • Absorption and Radiation Probabilities
  • Spontaneous Radiation
  • The Interaction of Stationary Systems
  • The Spectral Representation
  • Equilibrium Systems. The Fluctuation-Dissipation Theorem
  • 3.6 Green's Function and the Quantization of the Macroscopic Field in a Medium
  • Maxwell's Phenomenlogical Equations
  • Green's Function for a Field in a Medium
  • Normal Waves
  • The Dispersion Law
  • The Passage to the kt Representation
  • Field Quantization in a Medium
  • The wr Representation
  • CHAPTER 4: THERMAL RADIATION IN THE LINEAR APPROXIMATION
  • 4.1 The Statistics of an Equilibrium Field in Free Space
  • The Equilibrium Statistical Operator
  • The Characteristic Function
  • Photon Statistics
  • 4.2 Fluctuations of a Macroscopic Field in Matter
  • The Two-Stage Calcuation Procedure
  • The Direct Path
  • The kt Representation
  • The Observation Problem
  • Fluctuations of the Field in an Isotropic Medium
  • 4.3 The Thermal Radiation of Heated Bodies
  • Application of the Fluctuation-Dissipation Theorem
  • Kirchhoff's Law
  • 4.4 The Generalized Kirchhoff Law
  • The Input and Output Field
  • The Scattering Matrix
  • Vector Notation
  • Nyquist's Derivation of the Generalized Kirchhoff Law
  • Special Cases
  • The Higher Moments of Thermal Radiation
  • The Thermal Field in Perturbation Theory
  • Langevin's Derivation of the Generalized Kirchhoff Law
  • 4.5 The Kinetic Equation Derivation of the Generalized Kirchhoff's Law
  • Thermal Radiation and the Kinetic Equation
  • The Kinetic Equation for the x Function
  • Equations for Moments
  • Quantum Amplifier Noises
  • 4.6 Thermal Radiation in the Far Field
  • The Far Field and the a? Operators
  • The Correlation Function
  • Measuring the Scattering Matrix Modulus
  • The Microscopic Model
  • The Coherence Volume
  • Photon Counting
  • The Phenomenological Model
  • 4.7 The Interference of Intensities
  • The Probability of Photocount Coincidence
  • The Role of the Detector Volume
  • Interpretation of the Effect
  • CHAPTER 5: THE INFLUENCE OF THE ANHARMONISM OF MATTER ON THERMAL RADIATION
  • 5.1 Multiphoton Transitions and the Higher Field Moments
  • Anharmonism and the Correlation of Different-Frequency Modes
  • Equilibrium and Nonequilibrium Problems
  • The Two-Photon Paradox
  • 5.2 Calculation of Field Moments by Means of Perturbation Theory
  • The Relationship Between Output and Input Moments
  • The General Properties of Transformation
  • The Higher Corrections
  • 5.3 The Third Moment of the Thermal Field
  • The Connection with the Two-Time Correlaion Function of Interpretation of the Effect
  • Estimating the Cube of the Field
  • The Detection Problem
  • 5.4 Kirchhoff's Two-Photon Law
  • The Effective Kinetic Equation
  • The First Moment
  • The Second Moments
  • The Fourth Moments
  • Kirchoff's Two-Photon Law
  • The Comparison with One-Photon Thermal Radiation
  • CHAPTER 6: PARAMETRIC SCATTERING
  • 6.1 The Rate of Biphoton Generation
  • The Third Order of Perturbation Theory
  • The Effective Hamiltonian
  • The Probability of Biphoton Creation
  • The Differential Rate of Biphoton Creation
  • The Law of Conservation of Momentum
  • 6.2 The Integral Intensity of Parametric Scattering
  • The Low Frequency-Resolution Detector
  • Light Brightness in Parametric Scattering
  • The Low Angular-Resolution Detector
  • Allowing for the Nonparallelism of the Group and Phase Velocities
  • 6.3 The Form of the Spectral Line of Parametric Scattering
  • Coherence Length
  • k Spectroscopy
  • The Effective Linewidth
  • The Degeneracy Case
  • The Influence of the Pump Spectrum on the Signal Spectrum
  • The Gaussian Pump Beam
  • 6.4 Field Statistics and the Metrological Applications of Parametric Scattering
  • The Heisenberg Equations for Field Operators
  • Spontaneous Scattering
  • A Standard Photon Generator
  • The Rate of Coincidences for a Gaussian Pump
  • The Absolute Radiometer
  • Measurement Errors
  • 6.5 Parametric Superluminescence
  • Monochromatic Pumping
  • The Characteristic Function
  • The One-Dimensional Model: wqz and Kz Representations
  • Modulated Pumping and the Slowly Varying Ampulitude Representation
  • 6.6 Scattering by Polarition
  • Description of Polarition Scattering with a Linear Fluctuation-Dissipation Theorem
  • Application of the Nonlinear Fluctuation-Dissipation Theorem
  • The Unipolar Approximation
  • Kirchhoff's Law for Parametric and Polariton Scattering
  • CHAPTER 7: HYPERPARAMETRIC AND RAMAN SCATTERING
  • 7.1 Nonresonance Hyperparametric Scattering
  • The Centrosymmetric Medium
  • Hyperparametric Scattering in Piezocrystals
  • The Intensity of Hyperparametric Scattering in Piezocrystals
  • The Statistics of Cascade Hyperparametric Scattering
  • 7.2 Resonance Hyperparametric Scattering and Raman Scattering
  • The Equation for the Slowly Varying Field Operators
  • Vacuum Noise
  • Molecular Noise
  • 7.3 The Correlation of Stokes and Anti-Stokes Radiation in Raman Scattering
  • The Classical Model
  • The Phenomenological Description
  • Correlation in the One-Dimensional Approximation
  • The Coincidence Rate
  • The Gaussian Pump
  • Estimation of the Number of Coincidences
  • APPENDIX THE GREEN FUNCTION AND TYPES OF FIELD POLARIZATION IN AN ANISOTROPIC ABSORBING MEDIUM
  • Diagonalization and Inversion of Non-Hermitian Matrices
  • Eigenvectors and Eigenvalues of the Green Tensor
  • The Eigenvectors for Tensors Ji.e and e n
  • The Anisotropic Angles
  • References
  • Subject Index

Dateiformat: PDF
Kopierschutz: ohne DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

47,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen