Dyneins

Dynein Mechanics, Dysfunction, and Disease
 
 
Academic Press
  • 2. Auflage
  • |
  • erschienen am 28. November 2017
  • |
  • 530 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-809701-4 (ISBN)
 

Dyneins: Structure, Biology and Disease, Second Edition, offers a broad view of dyneins mechanics, dysfunction, and disease, providing an overview of dyneins from structure and function, to dysfunction and disease.

Since the first edition, enormous strides have been taken in understanding dynein structure, its organization in the axoneme, single molecule motor mechanics, and the consequences of defects for human biology, disease, and development.

To account for these enormous strides, the second edition is extensively revised. Additionally, the coverage has expanded from 24 to 42 chapters, and is now housed in two volumes. Much of the expanded coverage occurs in Volume 2 which focuses on dynein dysfunction and disease, such as the role of dynein and cancer.

Volume 1 covers the history and evolution of dyneins, dyneins in ciliary biology, and cytoplasmic dynein biology, while Volume 2 covers the structure and mechanics of dynein motors and dynein dysfunction and disease.

  • Presents a broad-based and up-to date view of dynein mechanics, dysfunction, and disease
  • Contains approaches from genetics, molecular biology, biochemistry, and biophysics discussed
  • Provides companion website with movies of dynamic cell behavior
  • Includes extensive chapters written by leading, global experts
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 11,05 MB
978-0-12-809701-4 (9780128097014)
0128097019 (0128097019)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Dyneins
  • Dyneins STRUCTURE, BIOLOGY AND DISEASE: Dynein Mechanics, Dysfunction, and Disease
  • Copyright
  • Contents
  • List of Contributors
  • Biography
  • Stephen King Biosketch
  • Preface
  • A Cautionary Note About Dynein Nomenclature
  • References
  • I - Structure and Mechanics of Dynein Motors
  • 1 - Electron microscopy of isolated dynein complexes and the power stroke mechanism
  • 1.1 Introduction
  • 1.1.1 Overview of dynein molecular architecture
  • 1.2 Historical background of dyneins
  • 1.2.1 Electron microscopy of the axonemes
  • 1.2.2 From two-dimensional to three-dimensional information of dynein arm structures
  • 1.2.3 Electron microscopy on isolated dynein arms from axonemes
  • 1.2.4 Cytoplasmic dyneins isolated from various types of cells
  • 1.3 Electron microscopic techniques used in recent dynein research
  • 1.3.1 Issues for electron microscopy observation on biological materials
  • 1.3.2 Advantages of electron microscopy over X-ray crystallography
  • 1.3.3 Brief description of the procedure of negative staining techniques
  • 1.4 Properties of dynein molecules revealed by advanced electron microscopic techniques
  • 1.4.1 Purification of axonemal dyneins from Chlamydomonas axonemes
  • 1.4.2 Purification of cytoplasmic dyneins
  • 1.4.3 Negative staining electron microscopy with image processing including masking, classifying, and averaging of inner-arm dyn...
  • 1.4.4 The flexibility of the tail revealed by negative stain electron microscopy
  • 1.4.5 The autoinhibition of cytoplasmic dynein 1
  • 1.5 Force generating mechanism of dynein
  • 1.5.1 Swing motion of the linker and changes in head morphology
  • 1.5.2 The change in size and shape of the head domain
  • 1.5.3 The flexibility of the stalk revealed by negative stain electron microscopy
  • 1.5.4 Force generating mechanism proposed by electron microscopy
  • 1.5.5 Winch and power stroke mechanism for force generation of dynein
  • 1.5.6 Perspectives
  • References
  • 2 - Mechanism and regulation of dynein motors
  • 2.1 Overall architecture of the dynein motor
  • 2.2 The mechanochemical cycle of the dynein motor
  • 2.3 Conformational changes in the AAA+ ring drive the mechanochemical cycle
  • 2.4 The remodeling of the linker during the mechanochemical cycle
  • 2.5 ATP hydrolysis primes the dynein motor for microtubule rebinding and the linker power stroke
  • 2.6 Variations of the dynein mechanochemical cycle
  • 2.7 How dynein motors walk along the microtubule
  • 2.8 Determinants of dynein directionality
  • 2.9 Dynein motor activation by cargo binding
  • 2.10 Conclusions
  • References
  • 3 - Structural analysis of dynein intermediate and light chains
  • 3.1 Introduction
  • 3.2 Abbreviated background of light chains
  • 3.3 Structure of the apo light chains
  • 3.4 Structure of liganded light chains
  • 3.5 LC8 and TcTex-1 promiscuity
  • 3.6 Light chain isoforms
  • 3.7 Mammalian dynein intermediate chains
  • 3.8 Molecular model of the light-intermediate chain structure
  • 3.9 Light chains and cargo
  • 3.10 Posttranslational modifications
  • 3.11 The role of LC8 and TcTex-1 on dynein
  • 3.12 Summary
  • References
  • 4 - Biochemical purification of axonemal and cytoplasmic dyneins
  • 4.1 Introduction
  • 4.2 Axonemal dyneins
  • 4.2.1 Isolation of cilia and flagella
  • 4.2.2 Demembranation
  • 4.2.3 Isolation of outer arm dynein
  • 4.2.4 Isolation of inner arm dynein
  • 4.3 Cytoplasmic dynein
  • 4.3.1 Cytoplasmic dynein 1
  • 4.3.2 Cytoplasmic dynein 2 (intraflagellar transport dynein)
  • 4.3.3 Recombinant dynein
  • 4.4 Storage of dynein
  • 4.5 Conclusion and perspective
  • Acknowledgments
  • References
  • 5 - Single-molecule dynein motor mechanics in vitro
  • 5.1 Introduction
  • 5.2 The mechanochemical cycle of dynein
  • 5.3 Processivity of a dynein dimer
  • 5.4 Velocity of dynein motors
  • 5.5 The stepping mechanism
  • 5.6 Stepping pattern of the two motor domains
  • 5.7 The role of the AAA sites in dynein motility
  • 5.8 Force generation
  • 5.9 The mechanism of minus end directionality
  • 5.10 Mammalian dynein/dynactin complex
  • 5.11 Future directions
  • Acknowledgments
  • References
  • 6 - Biophysical properties of dynein in vivo
  • 6.1 Motility and regulation of dynein in vitro
  • 6.2 Biophysical function of dynein in vivo
  • 6.3 Regulation of dynein motility in vivo
  • References
  • 7 - Mechanics of bidirectional cargo transport
  • 7.1 Introduction
  • 7.2 Experimental and computational work to date on bidirectional transport
  • 7.3 Models of bidirectional transport
  • 7.4 Kinesins involved in bidirectional transport
  • 7.5 Dynein properties relevant to bidirectional transport
  • 7.6 Roles of MAPs and tubulin PTMs in bidirectional transport
  • 7.7 Potential effects of membrane fluidity on bidirectional transport
  • 7.8 Concluding thoughts
  • References
  • 8 - Chemical probes for dynein
  • 8.1 General approach to inhibiting dynein
  • 8.2 Nucleotide-mimetic inhibitors of dynein
  • 8.2.1 Vanadate
  • 8.2.2 Erythro-9-[3-(2-hydroxynonyl)]adenine
  • 8.3 Ciliobrevins: cell-permeable small molecule dynein inhibitors
  • 8.3.1 Other dynein inhibitors
  • 8.3.2 Use of the ciliobrevins
  • 8.4 Other approaches that allow fast temporal control over dynein function
  • 8.4.1 Outlook
  • 8.4.2 Selectively inhibiting a conserved site: lessons from the development of AAA+ inhibitors
  • Acknowledgments
  • References
  • 9 - Computational modeling of dynein activity and the generation of flagellar beating waveforms
  • 9.1 Introduction
  • 9.2 Models for beat control in the flagellum
  • 9.3 Theory
  • 9.3.1 Planar description of the axonemal geometry
  • 9.3.2 Dynamic equations of bending patterns
  • 9.3.3 Oscillatory solutions and frequency representation
  • 9.3.3.1 Motor dynamics
  • 9.3.3.2 Solving the boundary value problem for time-periodic beats
  • 9.3.3.3 Numerical calculation of solutions
  • 9.3.3.4 Parameter choice
  • 9.3.3.5 Defining the matrix of coefficients
  • 9.3.3.6 Exploring the phase space-the space of all solutions
  • 9.3.3.7 Calculate solutions
  • 9.3.3.8 Display of the phase space and specific solutions
  • 9.4 Discussion
  • A.1 Coefficient equations for the boundary value problem
  • A.2 Parameter normalizations
  • References
  • II - Dynein Dysfunctionand Disease
  • 10 - Impacts of virus-mediated manipulation of host Dynein
  • 10.1 Dynein and viral replication
  • 10.2 Kinesins
  • 10.3 Innate immunity, the Rabs, Rab7-interacting lysosomal protein, and vesicular transport
  • 10.4 Dynein, viruses, and the innate immune response
  • 10.5 IFITM3 and VAP-A
  • 10.6 Dyneins and nuclear integration of viral DNA
  • 10.7 Posttranslationally modified microtubules and Dynein
  • 10.8 Emerging viruses and co-opting of Dynein
  • Major outstanding questions
  • Acknowledgments
  • References
  • 11 - The use of mouse models to probe cytoplasmic dynein function
  • 11.1 The rationale behind using a genetic approach to study the dynein complex
  • 11.2 Different approaches for mouse genetic studies
  • 11.2.1 Genotype-driven approach
  • 11.2.2 Phenotype-driven approach
  • 11.2.3 Genetic background matters
  • 11.3 An allelic series of mutations in the cytoplasmic dynein heavy chain gene, Dync1h1
  • 11.3.1 Dync1h1tm1Noh knockout mouse
  • 11.3.2 Dync1h1Loa and Dync1h1Cra1 N-ethyl-N-nitrosourea mutants
  • 11.3.3 Dync1h1Swl radiation-induced mutant
  • 11.4 DYNC1H1 mutations in humans
  • 11.5 Dynein light chain and intermediate chain mutants
  • 11.5.1 Dync1li1N235Y mutant mouse
  • 11.5.2 Dynll1 mutant mice
  • 11.5.3 Dync1i1-green fluorescent protein knockin mouse
  • 11.6 Dynactin mutant mice
  • 11.7 Conclusions
  • Acknowledgments
  • References
  • 12 - Cytoplasmic dynein and its regulators in neocortical development and disease
  • 12.1 Neocortical development
  • 12.2 The role of dynein in radial glia progenitors and interkinetic nuclear migration
  • 12.3 Roles for the dynein pathway in postmitotic neuronal precursors
  • 12.4 Overview of malformations of cortical development associated with dynein mutations
  • 12.5 Lissencephaly associated with LIS1 mutations
  • 12.6 Malformations of cortical development associated with DYNC1H1 mutations
  • 12.7 NDE1 mutations and the pathogenesis of severe microcephaly
  • 12.8 Summary
  • Acknowledgments
  • References
  • 13 - Cytoplasmic dynein dysfunction and neurodegenerative disease
  • 13.1 Introduction
  • 13.2 Cytoplasmic dynein function in neurons
  • 13.2.1 Molecular motors drive intracellular trafficking in neurons
  • 13.2.2 Axonal transport
  • 13.2.3 Dendritic trafficking
  • 13.2.4 Dynein in neurodevelopment
  • 13.2.4.1 Trophic factor signaling
  • 13.2.4.2 Neuronal migration
  • 13.2.5 Dynein function in degradative pathways in the neuron
  • 13.2.5.1 Lysosomes
  • 13.2.5.2 Proteasomes
  • 13.2.5.3 Aggresomes
  • 13.2.5.4 Autophagy
  • 13.2.6 Dynein is an essential motor in neurons
  • 13.3 Dynein dysfunction in mice
  • 13.3.1 Mouse models of hereditary motor neuropathy VIIB
  • 13.3.2 Legs-at-odd-angles, cramping-1, and sprawling mice
  • 13.4 Mutations in dynein and in dynein effectors result in a spectrum of neurodevelopmental and neurodegenerative disease in hum...
  • 13.4.1 Dynein mutations can lead to cortical malformation
  • 13.4.2 Dynein mutations cause CMT-2O and SMA-LED
  • 13.4.3 Dynactin mutations cause two distinct forms of neurodegeneration
  • 13.4.4 Mutations in the dynein effector BIDC2 also cause human disease
  • 13.4.5 Rab7
  • 13.5 Dynein dysfunction in the pathogenesis of neurodegenerative disease: ALS, HD, and PD
  • 13.5.1 Amyotrophic lateral sclerosis
  • 13.5.2 Huntington's disease
  • 13.5.3 Parkinson's disease
  • 13.6 Conclusions
  • References
  • 14 - Dynein dysfunction as a cause of primary ciliary dyskinesia and other ciliopathies
  • 14.1 Introduction
  • 14.2 Ultrastructure of motile cilia
  • 14.3 Outer dynein arms
  • 14.4 Inner dynein arms
  • 14.5 Ciliopathies
  • 14.6 Nodal cilia
  • 14.7 Ependymal cilia and hydrocephalus
  • 14.8 Sperm flagella and male infertility
  • 14.9 Fallopian tubes and female infertility
  • 14.10 Primary cilia dyskinesia
  • 14.11 Molecular defects affecting outer dynein arm components and docking
  • 14.11.1 Mutations in genes encoding for ODA components
  • 14.11.1.1 DNAI1
  • 14.11.1.2 DNAH5
  • 14.11.1.3 DNAH11
  • 14.11.1.4 DNAI2
  • 14.11.1.5 TXNDC3
  • 14.11.1.6 DNAL1
  • 14.11.2 Mutations in genes encoding for components of the ODA docking complex
  • 14.11.2.1 CCDC114
  • 14.11.2.2 ARMC4
  • 14.11.2.3 CCDC151
  • 14.11.2.4 TTC25
  • 14.11.2.5 CCDC103
  • 14.12 Molecular defects affecting cytoplasmic preassembly of dynein arms
  • 14.13 Preassembly defects of ODA complex type-2 and DNALI1-associated IDA complexes
  • 14.14 Preassembly defects of ODA type-1 and type-2 and DNALI1-associated IDA complexes
  • 14.15 Molecular defects affecting the 96-nm axonemal ruler
  • 14.16 Molecular defects affecting the nexin-dynein regulatory complex
  • 14.17 Molecular defects affecting ciliary beat regulation
  • 14.17.1 Molecular defects affecting radial spokes
  • 14.17.2 Molecular defects affecting the central pair complex
  • References
  • 15 - Severe skeletal abnormalities caused by defects in retrograde intraflagellar transport dyneins
  • 15.1 Introduction
  • 15.2 Role of cilia in skeletal development
  • 15.3 Clinical features of skeletal ciliopathies
  • 15.3.1 General aspects
  • 15.3.1.1 Skeletal findings
  • 15.3.1.2 Extraskeletal findings
  • 15.3.2 Short-rib polydactyly spectrum syndrome
  • 15.3.2.1 SRPS type I (Saldino-Noonan) and type III (Verma-Naumoff)
  • 15.3.2.2 SRPS type II (Majewski)
  • 15.3.2.3 SRPS type IV (Beemer-Langer)
  • 15.3.2.4 SRPS type V
  • 15.3.3 Jeune asphyxiating thoracic dystrophy (Jeune syndrome)
  • 15.3.4 Mainzer-Saldino syndrome
  • 15.3.5 Axial spondylometaphyseal dysplasia
  • 15.3.6 Endocrine-cerebro-osteodysplasia syndrome
  • 15.3.7 Orofaciodigital syndrome
  • 15.3.8 Sensenbrenner syndrome (chondroectodermal dysplasia)
  • 15.3.9 Ellis-van Creveld syndrome and Weyers acrofacial dysostosis
  • 15.3.10 Hydrolethalus and acrocallosal syndromes
  • 15.4 Cell biological basis of skeletal ciliopathies due to IFT defects
  • 15.5 Genetic basis of dynein-based skeletal ciliopathies associated with IFT defects
  • 15.6 Human mutations in cytoplasmic IFT dynein-2 genes
  • 15.6.1 Intraflagellar transport dynein-2 heavy chain (DYNC2H1)
  • 15.6.1.1 DYNC2H1 function
  • 15.6.1.2 DYNC2H1 human mutations and phenotype
  • 15.6.2 IFT dynein-2 intermediate chains WDR60 and WDR34
  • 15.6.2.1 WDR34 and WDR60 functions
  • 15.6.2.2 WDR34 and WDR60 human mutations and phenotype
  • 15.6.3 IFT dynein-2 light-intermediate chain (DYNC2LI1)
  • 15.6.3.1 DYNC2LI1 function
  • 15.6.3.2 DYNC2LI1 human mutations and phenotype
  • 15.6.4 IFT dynein-2 light chain (TCTEX1D2)
  • 15.6.4.1 TCTEX1D2 function
  • 15.6.4.2 TCTEX1D2 human mutations and phenotype
  • 15.7 Future perspective on clinical spectrum, new clinical models, and therapy
  • Acknowledgments
  • References
  • 16 - Ciliary dynein dysfunction caused by chronic alcohol exposure
  • 16.1 Overview
  • 16.2 Alcohol and mucociliary function
  • 16.2.1 Importance of mucociliary clearance
  • 16.2.2 Linkage of CBF to the ODAs in mammalian airway cilia
  • 16.2.3 Desensitization of dynein activation by prolonged alcohol exposure: putative redox mechanisms
  • 16.2.4 Kinase-phosphatase relationships in AICD
  • 16.3 Alcohol and Chlamydomonas flagella
  • 16.3.1 Alcohol-induced ciliary dysfunction is conserved
  • 16.3.2 Alcohol impacts the ODA
  • 16.3.3 Alcohol alters phosphorylation of specific ciliary proteins
  • 16.4 New questions and future directions
  • References
  • 17 - Dynein-based motility of pathogenic protozoa
  • 17.1 Introduction: impact of flagellated protozoan parasites on human health and agriculture
  • 17.2 Biology and mechanism of flagellar motility in parasite infections
  • 17.2.1 Kinetoplastids
  • 17.2.1.1 Role of motility in disease transmission and pathogenesis
  • 17.2.1.1.1 Trypanosoma brucei
  • 17.2.1.1.1.1 Transmission cycle in the tsetse fly T. brucei is extracellular in all life cycle stages and depends on its own fla...
  • 17.2.1.1.1.2 Pathogenesis in the mammalian host T. brucei is transmitted to a mammalian host when an infected tsetse fly takes a...
  • 17.2.1.1.1.3 Social motility In its natural environment, T. brucei is in constant contact with host tissue surfaces, particularl...
  • 17.2.1.1.2 Leishmania
  • 17.2.1.1.3 Trypanosoma cruzi
  • 17.2.1.2 Motility mechanisms
  • 17.2.2 Giardia
  • 17.2.3 Plasmodium
  • 17.2.4 Trichomonas vaginalis
  • 17.3 Final remarks
  • Supplementary data
  • Acknowledgments
  • References
  • 18 - Dynein axonemal light chain 4: involvement in congenital mirror movement disorder
  • 18.1 Introduction
  • 18.2 Axonemal dynein components: biology and disease
  • 18.2.1 DNAL4: biology and disease
  • 18.2.1.1 DNAL4 expression and localization
  • 18.2.1.2 DNAL4 protein interactions
  • 18.2.1.3 Gene ontology for DNAL4
  • 18.2.1.4 Identification of DNAL4 in mirror movement disorder
  • 18.2.1.4.1 Mirror movement disorder
  • 18.2.1.5 MRMV3 is linked to mutation in DNAL4 [1]
  • 18.3 Conclusions
  • References
  • 19 - Does dynein influence the non-Mendelian inheritance of chromosome 17 homologues in male mice?*
  • 19.2 Properties of t-complex testis expressed-1
  • 19.3 Properties of t-complex testis expressed-2
  • 19.4 Properties of Dnahc8
  • 19.5 Chromosomal deletion analysis modifies Lyon's model
  • 19.6 Identification of t-complex distorters
  • 19.7 What about dyneins?
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

136,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok