Application of Thermo-Fluidic Measurement Techniques

An Introduction
 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 3. Mai 2017
  • |
  • 274 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-809874-5 (ISBN)
 

Application of Thermo-Fluidic Measurement Techniques: An Introduction provides essential measurement techniques in heat transfer and aerodynamics. In addition to a brief, but physically elaborate description of the principles of each technique, multiple examples for each technique are included. These examples elaborate all the necessary details of (a) test setups, (b) calibration, (c) data acquisition procedure, and (d) data interpretation, with comments on the limitations of each technique and how to avoid mistakes that are based on the authors' experience.

The authors have different expertise in convection heat transfer and aerodynamics, and have collaborated on various research projects that employ a variety of experimental techniques. Each author has a different view and approach to individual experimental techniques, but these views complement each other, giving new users of each technique a rounded view.

With the introduction of this valuable reference book, the reader can quickly learn both the overall and detailed aspects of each experimental technique and then apply them to their own work.


  • Contains both basic principles and fundamental, physical descriptions
  • Provides examples that demonstrate how each experimental technique can be used for industrial testing and academic research in heat transfer and aerodynamics
  • Includes practical and in-depth examples for each technique, with comments on each experimental technique based on the authors' experiences, including limitations and trial errors with some examples of data interpretation
  • Combines classical techniques in aerodynamics and conduction/convection heat transfer with modern, cutting-edge approaches
  • Collates the information about various pointwise and whole field velocity and thermal measurement techniques in a single resource


Tongbeum KIM is a Professor of Thermo/fluids in the School of Mechanical and Aeronautical Engineering, University of the Witwatersrand, Johannesburg, South Africa. He received a PhD in Engineering from the University of Cambridge, UK. Dr. Kim received the HTFS Best Paper Award from UK National Heat Transfer Committee (09/2003), was recognized as an Outstanding Reviewer by the ASME Journal of Heat Transfer (11/2012), and was rated by the National Research Foundation of South Africa (C1, 01/2012-12/2017). His research interests include 1) Thermo-fluidic science and engineering in multi-scale porous media; 2) Turbomachinery aerodynamics and heat transfer.
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 21,83 MB
978-0-12-809874-5 (9780128098745)
0128098740 (0128098740)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • About the authors
  • Preface
  • Chapter 1 - Experimentation in Aerodynamics and Heat Transfer
  • 1.1 - Introduction
  • 1.2 - Aerodynamics
  • 1.3 - Convection and conduction heat transfer
  • 1.3.1 - Convection Heat Transfer
  • 1.3.2 - Conduction Heat Transfer
  • 1.4 - Classification of measurement techniques
  • 1.5 - Closure
  • References
  • Part 1 - Measurements in Aerodynamics
  • Chapter 2 - Flow Visualization
  • 2.1 - Introduction
  • 2.2 - Surface flow visualization using the oil-dye technique
  • 2.2.1 - Background
  • 2.2.2 - Dye Particles and Oil
  • 2.2.3 - Gravity Effect
  • 2.2.4 - Surface Preparation and Photographing
  • 2.3 - Surface flow visualization using thermochromic liquid crystal
  • 2.3.1 - Background
  • 2.3.2 - Application
  • 2.3.3 - Illumination
  • 2.3.4 - Heating
  • 2.3.5 - Image Capturing
  • 2.4 - Surface flow visualization using infrared thermography
  • 2.4.1 - Background
  • 2.4.2 - Surface Preparation
  • 2.4.3 - Calibration
  • 2.4.3.1 - Viewing Angle
  • 2.4.3.2 - Viewing Distance
  • 2.5 - In-flow visualization using neutrally buoyant helium bubbles
  • 2.5.1 - Background
  • 2.5.2 - Seeding the Flow
  • 2.5.3 - Illumination
  • 2.5.4 - Photographing
  • 2.6 - In-flow visualization using planar laser imaging
  • 2.6.1 - Background
  • 2.7 - In-flow visualization using ink-dye pigment injection
  • 2.7.1 - Background
  • 2.7.2 - Specific Gravity of Ink-pigment
  • 2.7.3 - Injection Velocity
  • 2.7.4 - Injection Probe
  • 2.7.5 - Photographing
  • 2.7.6 ETC
  • References
  • Chapter 3 - Pneumatic Measurements for Pressure, Velocity, and Flow-direction
  • 3.1 - Introduction
  • 3.2 - Static pressure measurement
  • 3.3 - Stagnation (total) pressure measurement
  • 3.3.1 - Background
  • 3.3.2 - Yaw (Incidence) Angle Effect
  • 3.3.3 - Reynolds Number Effect
  • 3.3.4 - Mach Number Effect
  • 3.3.5 - Velocity Gradient Effect
  • 3.3.6 - Turbulence Effects
  • 3.4 - Flow velocity measurement
  • 3.5 - Flow-direction measurement
  • 3.5.1 - Background
  • 3.5.2 - Three-hole Probe
  • 3.5.2.1 - Parameters
  • 3.5.2.2 - Calibration
  • 3.5.2.3 - Calibration Results and Discussion
  • 3.5.2.3.1 - Dependence of Pressures at Each Port on Yaw Angle
  • 3.5.2.3.2 - Determination of Yaw Angle
  • 3.5.3 - Five-hole Probe
  • 3.5.3.1 - Parameters
  • 3.5.3.2 - Calibration
  • 3.5.3.3 - Calibration Results and Discussion
  • 3.5.3.3.1 - Dependence of Pressure at Each Port on Yaw Angle and Pitch Angle
  • 3.5.3.3.2 - Effect of Reynolds Number on Yaw and Pitch Angles
  • 3.5.3.3.3 - Determination of Yaw Angle and Pitch Angle
  • References
  • Chapter 4 - Fast-response Velocity and Shear Stress Measurements
  • 4.1 - Introduction
  • 4.2 - Hot-wire anemometry
  • 4.2.1 - What is it?
  • 4.2.2 - How Does it Work?
  • 4.2.3 - Calibration
  • 4.2.4 - Hot-Wire Calibration
  • 4.2.4.1 - Sensitivity of Electric Voltage to Flow Velocity
  • 4.2.4.2 - Effect of Yaw Angle
  • 4.3 - Hot-film anemometry
  • 4.3.1 - What is it?
  • 4.3.2 How Does it Work?
  • 4.3.2 - Hot-Film Calibration
  • 4.4 Particle image velocimetry
  • References
  • Chapter 5 - Velocity Field Measurement Using Particle Image Velocimetry (PIV)
  • 5.1 - Introduction
  • 5.2 - How PIV works
  • 5.2.1 - PIV Methods
  • 5.2.2 - Interrogation
  • 5.3 - PIV system parameters
  • 5.3.1 - Flow Test Rig
  • 5.3.2 - Seeding Generator
  • 5.3.2.1 - Seeding Particles
  • 5.3.2.2 - Seeding Material Health Hazards
  • 5.3.3 - Pulsed Laser System and Light Sheet Optics
  • 5.3.3.1 - Laser Light Sheet Alignment
  • 5.3.3.2 - Laser Pulse Timing
  • 5.3.3.3 - Laser Light Sheet Thickness
  • 5.3.3.4 - Laser Safety
  • 5.3.4 - CCD Camera System
  • 5.3.4.1 - Calibration
  • 5.3.4.2 - Particle Image Diameter
  • 5.3.5 - Data Acquisition and Processing
  • References
  • Part 2 - Measurements in Heat Transfer
  • Chapter 6 - Point Temperature Measurements
  • 6.1 - Introduction
  • 6.2 - Thermocouples
  • 6.2.1 - Background
  • 6.2.2 - Size of the Junction
  • 6.2.3 - Calibration and Data Acquisition
  • 6.2.4 - Thermocouple Connection Leads
  • 6.2.5 - Types of Measurement Devices
  • 6.3 - Surface-mountable thermocouples
  • 6.4 - Heat flux measurement
  • 6.4.1 - Background
  • 6.4.2 - Calibration
  • 6.4.3 - Test Rig for Heat Flux Calibration
  • 6.4.4 - Calibration Method
  • 6.4.5 - Calibration Results
  • References
  • Chapter 7 - Surface Heat Transfer Mapping Using Thermochromic Liquid Crystal
  • 7.1 - Introduction
  • 7.2 - Properties of TLC
  • 7.3 - Application and calibration
  • 7.3.1 - Application and Illumination
  • 7.3.2 - Calibration
  • 7.4 - Post image analysis for heat transfer coefficient
  • 7.4.1 - One-Dimensional (1D) Transient Heat Flow in a Semiinfinite Solid
  • 7.4.2 - Estimate of Adiabatic Reference Temperature
  • 7.4.3 - Estimate of Transient Test Time
  • 7.4.4 - Modification of 1D Solution for Exponential Flow Temperature Rise
  • 7.4.5 - Determination of Surface Heat Transfer Coefficient
  • References
  • Chapter 8 - Thermal Mapping Using Infrared Thermography
  • 8.1 - Introduction
  • 8.2 - Principles
  • 8.2.1 - Measuring Temperature on Metals and Glasses
  • 8.2.2 - Energy Detector
  • 8.2.3 - Advantages
  • 8.3 - Calibration
  • 8.3.1 - Why in Situ Calibration?
  • 8.3.2 - Calibration Setup
  • 8.3.3 - Systematic Error (Comparison With a Precalibrated Thermocouple)
  • 8.3.4 - Effect of Viewing Angle (a)
  • 8.4 - Estimating heat fluxes
  • 8.5 - Correction for nonperpendicular viewing angle
  • 8.5.1 - Background
  • 8.5.2 - Procedure
  • 8.5.3 - Example and Validation
  • 8.5.4 - Fortran Code
  • References
  • Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok