Fungi

Biology and Applications
 
 
Wiley-Blackwell (Verlag)
  • 3. Auflage
  • |
  • erschienen am 4. September 2017
  • |
  • 408 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-37416-9 (ISBN)
 
This newly updated edition covers a wide range of topics relevant to fungal biology, appealing to academia and industry
Fungi are extremely important microorganisms in relation to human and animal wellbeing, the environment, and in industry. The latest edition of the highly successful Fungi: Biology and Applications teaches the basic information required to understand the place of fungi in the world while adding three new chapters that take the study of fungi to the next level. Due to the number of recent developments in fungal biology, expert author Kevin Kavanagh found it necessary to not only update the book as a whole, but to also provide new chapters covering Fungi as Food, Fungi and the Immune Response, and Fungi in the Environment.
Proteomics and genomics are revolutionizing our understanding of fungi and their interaction with the environment and/or the host. Antifungal drug resistance is emerging as a major problem in the treatment of fungal infections. New fungal pathogens of plants are emerging as problems in temperate parts of the world due to the effect of climate change. Fungi: Biology and Applications, Third Edition offers in-depth chapter coverage of these new developments and more--ultimately exposing readers to a wider range of topics than any other existing book on the subject.
* Includes three new chapters, which widen the scope of fungi biology for readers
* Takes account of recent developments in a wide range of areas including proteomics and genomics, antifungal drug resistance, medical mycology, physiology, genetics, and plant pathology
* Provides extra reading at the end of each chapter to facilitate the learning process
Fungi: Biology and Applications is designed for undergraduate students, researchers, and those working with fungi for the first time (postgraduates, industrial scientists).
3. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 14,41 MB
978-1-119-37416-9 (9781119374169)
1119374162 (1119374162)
weitere Ausgaben werden ermittelt
About the Editor
KEVIN KAVANAGH is Professor of Microbiology in the Department of Biology at Maynooth University, Maynooth, County Kildare, Ireland.
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • Chapter 1 Introduction to Fungal Physiology
  • 1.1 Introduction
  • 1.2 Morphology of Yeasts and Fungi
  • 1.2.1 Filamentous Fungi
  • 1.2.2 Yeasts
  • 1.3 Ultrastructure and Function of Fungal Cells
  • 1.3.1 The Fungal Cell Surface
  • 1.3.2 Subcellular Architecture and Organelle Function
  • 1.4 Fungal Nutrition and Cellular Biosyntheses
  • 1.4.1 Chemical Requirements for Growth
  • 1.4.2 Fungal Cultivation Media
  • 1.4.3 Nutrient Uptake and Assimilation
  • 1.4.4 Overview of Fungal Biosynthetic Pathways
  • 1.4.5 Fungal Cell Wall Growth
  • 1.5 Fungal Metabolism
  • 1.5.1 Carbon Catabolism
  • 1.5.2 Nitrogen Metabolism
  • 1.6 Fungal Growth and Reproduction
  • 1.6.1 Physical Requirements for Growth
  • 1.6.2 Cellular Reproduction
  • 1.6.3 Population Growth
  • 1.6.4 Fungal Cell Death
  • 1.7 Conclusion
  • Further Reading
  • Chapter 2 Fungal Genetics
  • 2.1 Introduction
  • 2.1.1 Fungi as Pioneer Organisms for Genetic Analysis
  • 2.1.2 Significance/Advantages of Fungi as Model Organisms
  • 2.2 Fungal Lifecycles
  • 2.2.1 Ascomycete Yeast (Saccharomyces cerevisiae)
  • 2.2.2 Ascomycete Filamentous Fungi (Neurospora crassa and Aspergillus nidulans)
  • 2.2.3 Basidiomycete Filamentous Fungi (Coprinus cinereus)
  • 2.3 Sexual Analysis: Regulation of Mating
  • 2.3.1 Ascomycete Yeast
  • 2.3.2 Filamentous Ascomycetes
  • 2.3.3 Filamentous Ascomycete Dimorphic Fungi
  • 2.3.4 Filamentous Basidiomycetes
  • 2.4 Unique Characteristics of Filamentous Fungi that Are Advantageous for Genetic Analysis
  • 2.4.1 Parasexual Analysis
  • 2.4.2 Gene Silencing
  • 2.5 Genetics as a Tool
  • 2.5.1 Tetrad Analysis
  • 2.5.2 Molecular Methods for Genetic Screens
  • 2.6 Conclusion
  • Acknowledgment
  • Further Reading
  • Chapter 3 Fungal Genomics
  • 3.1 Introduction
  • 3.1.1 The Fungal Kingdom
  • 3.2 Genome Sequencing
  • 3.2.1 Sanger Sequencing
  • 3.2.2 Next-Generation Sequencing
  • 3.3 Bioinformatics Tools
  • 3.3.1 Locating Homologs
  • 3.3.2 Multiple Sequence Alignment
  • 3.3.3 Gene Ontology
  • 3.4 Comparative Genomics
  • 3.4.1 Gene Families Associated with Disease
  • 3.4.2 Synteny
  • 3.4.3 In silico Metabolic Analysis
  • 3.4.4 Horizontal Gene Transfer
  • 3.5 Genomics and the Fungal Tree of Life
  • 3.5.1 Phylogenetics
  • 3.6 Online Fungal Genomic Resources
  • 3.6.1 The Joint Genome Institute Fungi Portal
  • 3.6.2 Saccharomyces, Candida, and Aspergillus Genome Databases
  • 3.7 Conclusion
  • Further Reading
  • Chapter 4 Fungal Genetics: A Post-Genomic Perspective
  • 4.1 Introduction
  • 4.2 The Yeast Saccharomyces cerevisiae: A Cornerstone of Post-Genomic Research
  • 4.3 Of -omics and Systems Biology
  • 4.4 Genomics
  • 4.4.1 Analyzing Encoded Information
  • 4.4.2 Pattern Recognition within and between Genome Sequences
  • 4.4.3 Assigning Biological Functions to Fungal Genome Sequences
  • 4.4.4 Identification by in silico Analysis
  • 4.4.5 Identification by Reverse Genetics
  • 4.4.6 Identification by Association
  • 4.5 Transcriptomics and Proteomics
  • 4.5.1 Analyzing Encoded Information in Time and Space
  • 4.5.2 Transcriptomics
  • 4.5.3 Proteomics
  • 4.6 Systems Biology
  • 4.6.1 Establishing Cause and Effect in Time and Space
  • 4.6.2 Case Study: The Application of Systems Biology to Modeling Galactose Metabolism - A Basic Fungal Metabolic Pathway
  • 4.7 Conclusion
  • Further Reading
  • Chapter 5 Fungal Proteomics
  • 5.1 Introduction
  • 5.2 Protein Isolation and Purification
  • 5.2.1 Cell Lysis Strategies
  • 5.2.2 Chromatography
  • 5.2.3 Protein Extraction Prior to 2-D Polyacrylamide Gel Electrophoresis (2D-PAGE)
  • 5.2.4 Protein Extraction and Enzymatic Fragmentation without prior Purification
  • 5.2.5 Subcellular Fractionation
  • 5.2.6 Protein Recovery from Culture Supernatants
  • 5.3 Electrophoretic Techniques
  • 5.3.1 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
  • 5.3.2 2D-PAGE
  • 5.4 Protein Mass Spectrometry
  • 5.4.1 Genome Databases
  • 5.4.2 Protein Digestion
  • 5.4.3 Mass Spectrometry
  • 5.4.4 MALDI-ToF Mass Spectrometry
  • 5.4.5 Electrospray Mass Spectrometry
  • 5.4.6 Shotgun Proteomics
  • 5.4.7 Quantitative Proteomics
  • 5.4.8 Label-Free Proteomics
  • 5.4.9 Label-Based Proteomics
  • 5.5 Fungal Proteomics
  • 5.5.1 Trichoderma Proteomics
  • 5.5.2 Aspergillus Proteomics
  • 5.6 Label-Free Quantitative Proteomic Applications
  • 5.7 Specialized Proteomics Applications in Fungal Research
  • 5.8 Conclusion
  • Acknowledgments
  • Further Reading
  • Chapter 6 Fungi as Food
  • 6.1 Introduction
  • 6.2 The Main Cultivated Mushroom Species
  • 6.2.1 Button Mushroom/Champignon de Paris (Agaricus bisporus)
  • 6.2.2 Oyster Mushroom (Pleurotus Species)
  • 6.2.3 Shiitake (Lentinula edodes)
  • 6.3 The Main Species of Mushroom Collected in Nature
  • 6.3.1 Chanterelle (Cantharellus cibarius)
  • 6.3.2 Morels (Morchella species)
  • 6.3.3 Truffles (Tuber species)
  • 6.3.4 Boletes (Boletus Species)
  • 6.4 Nutritional Value of Mushrooms
  • 6.4.1 Mushrooms as a Source of Vitamins
  • 6.4.2 Mushrooms as a Source of Minerals
  • 6.5 Potential Medicinal Properties of Mushrooms
  • 6.6 Conclusion
  • Further Reading
  • Useful Websites
  • Chapter 7 Pharmaceutical and Chemical Commodities from Fungi
  • 7.1 Introduction
  • 7.2 Fungal Metabolism
  • 7.3 Antibiotic Production
  • 7.3.1 Antibiotic Production Cycles
  • 7.3.2 Industrial Production of Antibiotics
  • 7.3.3 Additional Fungal Antibiotics
  • 7.4 Pharmacologically Active Compounds
  • 7.4.1 Cyclosporin A
  • 7.4.2 Statins
  • 7.4.3 Alkaloids
  • 7.4.4 Gibberellins
  • 7.4.5 Endophytic Compounds
  • 7.5 Chemical Commodities
  • 7.5.1 Citric Acid
  • 7.5.2 Itaconic Acid
  • 7.5.3 Vitamins
  • 7.5.4 Fungal Pigments
  • 7.6 Yeast Extracts
  • 7.6.1 Yeast Extract Production
  • 7.7 Enriched Yeast
  • 7.7.1 Selenium Yeast Production
  • 7.8 Conclusion
  • Further Reading
  • Chapter 8 Biotechnological Use of Fungal Enzymes
  • 8.1 Introduction
  • 8.2 Enzymes in Industry
  • 8.3 Current Enzyme Applications
  • 8.3.1 Detergent Industry
  • 8.3.2 Bioethanol and Biodiesel
  • 8.3.3 Tanning Industry
  • 8.3.4 Effluent and Waste Treatment
  • 8.3.5 Food Processing
  • 8.3.6 Fruit Juice Maceration
  • 8.3.7 Animal Feed
  • 8.4 Enzymes and Sustainability
  • 8.5 Future Direction of Industrial Enzymes
  • 8.6 Applications of Specific Fungal Enzymes
  • 8.6.1 Proteases
  • 8.6.2 Cellulase
  • 8.6.3 Xylanase
  • 8.6.4 Amylase
  • 8.6.5 Lipases
  • 8.6.6 Phytase
  • 8.7 Enzyme Production Strategies
  • 8.8 Conclusion
  • Further Reading
  • Chapter 9 Biotechnological Exploitation of Heterologous Protein Production in Fungi
  • 9.1 Introduction
  • 9.2 Heterologous Protein Expression in Fungi
  • 9.2.1 Heterologous DNA
  • 9.2.2 Vectors
  • 9.2.3 Transformation and Selection
  • 9.2.4 Host Systems
  • 9.3 Use of Saccharomyces cerevisiae for Heterologous Protein Production
  • 9.3.1 Expression Vectors
  • 9.3.2 Regulating the Level of Heterologous mRNA in Host Cells
  • 9.3.3 Ensuring High-Level Protein Production
  • 9.3.4 Ensuring Authentic Protein Structure and Function
  • 9.3.5 Limitations
  • 9.4 Use of Pichia pastoris for Heterologous Protein Production
  • 9.5 Case Study: Hepatitis B Vaccine - A Billion-Dollar Heterologous Protein from Yeast
  • 9.5.1 Hepatitis: A Killer Disease and Huge Market Opportunity
  • 9.5.2 A Vaccine from Infected Carriers of the Disease
  • 9.5.3 Genetically Engineering a Recombinant Vaccine
  • 9.5.4 From Proof of Principle to Industrial Scale-up
  • 9.5.5 Much More than a Development in Expression Technology
  • 9.6 Further Biotechnological Applications of Expression Technology
  • 9.6.1 Expression and Analysis of Heterologous Receptor Proteins
  • 9.6.2 Hybrid Analysis: An Expression System that Turns Protein-Protein Interactions into a Scoreable Phenotype
  • 9.7 Conclusion
  • Further Reading
  • Chapter 10 Fungal Infections of Humans
  • 10.1 Introduction
  • 10.2 Superficial Mycoses
  • 10.3 Opportunistic Mycoses
  • 10.3.1 Candidiasis
  • 10.3.2 Aspergillosis
  • 10.3.3 Cryptococcosis
  • 10.3.4 Pneumocystis Pneumonia
  • 10.4 Endemic Systemic Mycoses
  • 10.4.1 Histoplasmosis
  • 10.4.2 Blastomycosis, Coccidioidomycosis, and Paracoccidioidomycosis
  • 10.5 Mycotoxicoses
  • 10.6 Conclusion
  • Further Reading
  • Useful Websites
  • Chapter 11 Immunity to Human Fungal Infections
  • 11.1 Introduction
  • 11.2 Compromised Immunity Increases Host Susceptibility to Fungal Infections
  • 11.2.1 Naturally Occurring or Acquired Immunodeficiencies
  • 11.2.2 Genetically Manipulated Animal Models
  • 11.3 Shaping of the Antifungal Immune Response
  • 11.3.1 Host-Contributed Factors
  • 11.3.2 Pathogen-Contributed Factors
  • 11.4 Paradigm Shifts in Antifungal Immunity
  • 11.4.1 Adaptive Cell-Mediated Immunity
  • 11.4.2 Shifting of the Paradigm
  • 11.4.3 The Role of Antibodies Revisited
  • 11.4.4 Innate Immunity Revisited
  • 11.5 Anatomy of the Antifungal Immune Response
  • 11.5.1 Pattern Recognition Receptors
  • 11.5.2 Phagocytes, Phagocytosis, and Fungal Killing
  • 11.5.3 Iron Sequestration as an Innate Antifungal Immune Response
  • 11.5.4 The Role of Autophagy in Antifungal Immunity
  • 11.5.5 Antimicrobial Peptides
  • 11.6 The Role of DCs in Antifungal Immunity
  • 11.6.1 Unique Functional and Phenotypic Features of DCs
  • 11.7 Adaptive Immunity to Fungal Infections
  • 11.7.1 Humoral Immunity
  • 11.7.2 T Cell-Mediated Immunity
  • 11.8 Immunity to Dermatophytes
  • 11.8.1 Dermatophytes - Atypical Pathogens
  • 11.8.2 Cell-Mediated Innate Immunity to Dermatophytes
  • 11.8.3 Adaptive Immunity to Dermatophytes
  • 11.9 Evasion of Host Immunity by Fungal Pathogens
  • 11.10 Conclusion
  • Further Reading
  • Chapter 12 Antifungal Agents for Use in Human Therapy
  • 12.1 Introduction
  • 12.2 Drugs Targeting the Plasma Membrane
  • 12.2.1 Polyenes
  • 12.2.2 Azoles
  • 12.2.3 Allylamines and Thiocarbamates
  • 12.2.4 Octenidine and Pirtenidine
  • 12.2.5 Morpholines and Other Agents
  • 12.3 Drugs Targeting the Cell Wall
  • 12.3.1 Echinocandins
  • 12.3.2 Nikkomycin and Chitin Synthesis
  • 12.4 Drugs Targeting Nucleic Acid and Protein Synthesis
  • 12.4.1 Sordarin
  • 12.4.2 5-Fluorocytosine
  • 12.5 Novel Therapies
  • 12.6 Conclusion
  • Further Reading
  • Chapter 13 Fungi in the Environment
  • 13.1 Introduction
  • 13.2 Macrofungi, Mushrooms, and Sporocarps
  • 13.3 Symbiotic Fungi
  • 13.4 Saprobic Fungi
  • 13.5 Parasitic Fungi
  • 13.6 Fungi in Food Webs
  • 13.7 Fungi and Nutrient Cycling
  • 13.8 Quantifying Fungi in the Environment
  • 13.8.1 Sampling Methods for Fungal Studies
  • 13.8.2 Identification Methods Used in Fungal Studies
  • 13.9 Conclusion
  • Further Reading
  • Chapter 14 Fungal Pathogens of Plants
  • 14.1 Introduction
  • 14.2 Disease Symptoms
  • 14.3 Factors Influencing Disease Development
  • 14.3.1 The Pathogen
  • 14.3.2 The Host
  • 14.3.3 Environmental Conditions
  • 14.4 The Disease Cycle
  • 14.5 Genetics of the Plant-Fungal Pathogen Interaction
  • 14.6 Mechanisms of Fungal Plant Parasitism
  • 14.6.1 Mechanical Means of Parasitism
  • 14.6.2 Pathogen Metabolite-Mediated Parasitism
  • 14.7 Mechanisms of Host Defense
  • 14.8 Disease Control
  • 14.8.1 Cultural Practices that Aid Disease Control
  • 14.8.2 Fungicidal Control of Plant Pathogens
  • 14.8.3 Host Resistance to Disease
  • 14.8.4 Biological Control of Fungal Pathogens
  • 14.9 Disease Detection and Diagnosis
  • 14.10 Vascular Wilt Diseases
  • 14.10.1 Fusarium Wilts
  • 14.10.2 Other Wilts of Economic Significance
  • 14.11 Blights
  • 14.11.1 Late Blight of Potatoes
  • 14.12 Rots and Damping-Off Diseases
  • 14.12.1 Pythium Damping-Off Disease
  • 14.13 Leaf and Stem Spots, Anthracnose, and Scabs
  • 14.13.1 Spot and Blotch Diseases Caused by Mycosphaerella Species
  • 14.14 Rusts, Smuts, and Powdery Mildew Diseases
  • 14.15 Global Repercussions of Fungal Diseases of Plants
  • 14.16 Conclusion
  • Acknowledgments
  • Further Reading
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

112,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok