Biosensors and Bioelectronics

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 2. Juli 2015
  • |
  • 344 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803101-8 (ISBN)
 

Biosensors and Bioelectronics presents the rapidly evolving methodologies that are relevant to biosensors and bioelectronics fabrication and characterization. The book provides a comprehensive understanding of biosensor functionality, and is an interdisciplinary reference that includes a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers.

Authored by a team of bioinstrumentation experts, this book serves as a blueprint for performing advanced fabrication and characterization of sensor systems-arming readers with an application-based reference that enriches the implementation of the most advanced technologies in the field.


  • Features descriptions of functionalized nanocomposite materials and carbon fibre electrode-based biosensors for field and in vivo applications
  • Presents a range of interwoven contributing subjects, including electrochemistry, nanoparticles, and conducting polymers
  • Includes more than 70 figures and illustrations that enhance key concepts and aid in retention
  • Ideal reference for those studying bioreceptors, transducers, bioinstrumentation, nanomaterials, immunosensors, nanotubes, nanoparticles, and electrostatic interactions
  • Authored by a collaborative team of scientists with more than 50 years of experienced in field research and instruction combined
  • Englisch
  • USA
Elsevier Science
  • 25,97 MB
978-0-12-803101-8 (9780128031018)
0128031018 (0128031018)
weitere Ausgaben werden ermittelt
  • Front Cover
  • BIOSENSORS AND BIOELECTRONICS
  • Copyright
  • CONTENTS
  • CONTRIBUTORS
  • PREFACE
  • Chapter 1 - Introduction to Biosensors
  • 1.1 INTRODUCTION
  • 1.2 BASIC PRINCIPLE OF A BIOSENSOR
  • 1.3 COMPONENTS OF A BIOSENSOR
  • 1.4 MOLECULAR RECOGNITION
  • 1.5 CLASSIFICATION OF BIOSENSORS BASED ON TRANSDUCERS
  • 1.6 PIEZOELECTRIC BIOSENSORS
  • 1.7 MAGNETOELASTIC BIOSENSORS
  • 1.8 FIELD EFFECT TRANSISTOR-BASED BIOSENSOR
  • 1.9 CALORIMETRIC BIOSENSOR
  • 1.10 NONINVASIVE BIOSENSORS
  • 1.11 ELECTROCHEMICAL BIOSENSORS
  • 1.12 VARIOUS ELECTROCHEMICAL TECHNIQUES
  • 1.13 ELECTROANALYTICAL CHARACTERISTICS OF BIOSENSORS
  • 1.14 MEMBRANES USED IN BIOSENSORS FOR SELECTIVITY
  • 1.15 BIOSENSOR ELECTRODE FABRICATION TECHNIQUES
  • REFERENCES
  • Chapter 2 - Nanocomposite Matrix Functionalization for Biosensors
  • 2.1 INTRODUCTION
  • 2.2 ORGANIC CONDUCTING POLYMERS
  • 2.3 INORGANIC NANOPARTICLES
  • 2.4 CHITOSAN AND NAFION
  • 2.5 IMMOBILIZATION STRATEGIES
  • 2.6 PROPERTIES OF IMMOBILIZED ENZYMES
  • 2.7 THE BIOLOGY OF ENZYME IMMOBILIZATION
  • REFERENCES
  • Chapter 3 - Enzymatic Biosensors
  • 3.1 ENZYMATIC BIOSENSORS
  • 3.2 HISTORY OF BIOSENSORS
  • 3.3 ENZYMATIC AND NONENZYMATIC BIOSENSORS FOR VARIOUS DISEASES
  • 3.4 BIOMARKERS FOR DIAGNOSIS OF DISEASES
  • 3.5 GLUCOSE OXIDASE-BASED GLUCOSE BIOSENSORS FOR DIABETES
  • 3.6 NONINVASIVE GLUCOSE BIOSENSOR
  • 3.7 IMPLANTABLE GLUCOSE BIOSENSORS
  • 3.8 CHOLESTEROL BIOSENSOR
  • 3.9 OXIDATIVE STRESS BIOMARKERS
  • 3.10 SUPEROXIDE ANION RADICAL BIOSENSOR
  • 3.11 THIOL BIOSENSOR
  • 3.12 NITRIC OXIDE BIOSENSOR
  • 3.13 NITRITE BIOSENSOR
  • 3.14 NITRATE REDUCTASE-BASED BIOSENSOR FOR NITRATE
  • 3.15 APOPTOSIS MARKER
  • 3.16 SIMULTANEOUS DETERMINATION OF BIOMARKERS
  • 3.17 BIENZYMATIC BIOSENSOR
  • 3.18 ENZYME INHIBITION-BASED BIOSENSORS
  • 3.19 ENZYME MIMETIC (METALLOPORPHYRIN)-BASED BIOSENSORS
  • 3.20 SCREEN-PRINTED FUNCTIONALIZED ELECTRODES AND ADVANTAGES
  • 3.21 NANOCOMPOSITE-ENHANCED ELECTROCHEMICAL BIOSENSORS
  • 3.22 RECENT APPLICATIONS
  • 3.23 VETERINARY
  • 3.24 FOOD AND AGRICULTURE
  • 3.25 BIOMEDICAL APPLICATIONS
  • REFERENCES
  • Chapter 4 - Immunosensors
  • 4.1 INTRODUCTION
  • 4.2 ANTIBODY AS BIORECOGNITION ELEMENT
  • 4.3 TYPES OF ANTIBODIES AND ANTIBODY FRAGMENTS
  • 4.4 TYPES OF IMMUNOSENSORS
  • 4.5 LABELED AND LABEL-FREE IMMUNOSENSORS
  • 4.6 IMMUNOSENSOR APPLICATIONS
  • 4.7 FUTURE PROSPECTS
  • REFERENCES
  • Chapter 5 - Instrumentation
  • 5.1 VIRTUAL INSTRUMENTATION
  • 5.2 INTRODUCTION TO NI LABVIEW
  • 5.3 DIFFERENCE BETWEEN LABVIEW AND CONVENTIONAL LANGUAGES
  • 5.4 FRONT PANEL
  • 5.5 BLOCK DIAGRAM
  • 5.6 ICON AND CONNECTOR PANEL
  • 5.7 CONTROLS PALETTE
  • 5.8 FUNCTION PALETTE
  • 5.9 TOOLS PALETTE
  • 5.10 CREATING, EDITING, WIRING, DEBUGGING, AND SAVING VIS
  • 5.11 SUBVIS - CREATING SUBVIS
  • 5.12 LOOPING: FOR LOOP, WHILE LOOP
  • 5.13 SHIFT REGISTERS AND SEQUENCE LOCALS
  • 5.14 CASE AND SEQUENCE STRUCTURES
  • 5.15 MYDAQ
  • 5.16 VIRTUAL ELECTROCHEMICAL ANALYZER
  • 5.17 ELECTRONICS OF ELECTROCHEMICAL BIOSENSOR
  • REFERENCES
  • INDEX
Chapter 2

Nanocomposite Matrix Functionalization for Biosensors


Chandran Karunakaran1, Paulraj Santharaman1,  and Mainak Das2     1Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, Tamil Nadu, India     2Biological Sciences and Bioengineering, Design Program, Indian Institute of Technology (IIT), Kanpur, Uttar Pradesh, India

Abstract


In this chapter, the advent of nanotechnology for development of highly efficient nanobiosensors is presented. A brief account of organic conducting nanopolymers and inorganic nanoparticles for highly sensitive biosensor applications are outlined. Organic conducting polymers include polypyrrole, polyanilne, polythiophene, (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), their syntheses, properties and their applications as transducers, organic electrochemical transistors, etc. Inorganic nanoparticles especially gold nanoparticles, carbon nanotubes, zinc oxide, graphene and nitrogen doped graphene oxide nanoparticles integrated in conducting polymer matrix for enhancing the electrical process and biofunctionalization with the biorecognition elements. These nanocomposites provide biocompative immobilization matrix, low background currents, large surface and easy surface regeneration and also act as an electron accelerator between the electrode and the buried active site of the enzymes. Further, the different immobilization strategies for nanobiosensor development are highlighted.

Keywords


Biofunctionalization; Immobilization strategies; Nanocomposite matrix; Nanoparticles; Organic conducting polymers

Contents

2.1 Introduction 70

2.2 Organic conducting polymers 71

2.2.1 Nature of conducting polymers 72

2.2.2 Synthesis of conducting polymeric nanomaterials 72

2.2.3 Electrochemical synthesis of conducting polymers 73

2.2.3.1 Polyaniline, polypyrrole, and polythiopene 75

2.2.3.2 Poly(3,4-ethylenedioxythiophene) 79

2.2.4 Mechanism of charge transport in conducting polymers 81

2.2.5 Organic electronics and electrochemical transistors 84

2.3 Inorganic nanoparticles 86

2.3.1 Gold nanoparticles 87

2.3.1.1 GNP act as an immobilization matrix 87

2.3.1.2 GNP acts as electron wire for electron transfer 88

2.3.1.3 Synthesis of GNP 90

2.3.1.4 Characterization of GNP nanoparticles in biosensors 93

2.3.2 Carbon nanotubes 95

2.3.2.1 Types of CNTs 96

2.3.2.2 Synthesis of CNTs 98

2.3.2.3 The functionalization of carbon nanotubes 100

2.3.2.4 Carbon nanotubes-based electrochemical biosensors 102

2.3.3 Zinc Oxide 104

2.3.3.1 Role of ZnO nanostructures in biosensors 105

2.3.3.2 Synthesis of ZnO nanostructures 107

2.3.3.3 Immobilization of biomolecules on ZnO-based matrices 108

2.3.3.4 ZnO nanostructure-based biosensors 108

2.3.4 Graphene and graphene oxide 109

2.3.4.1 Role of graphene and graphene oxide in biosensors 111

2.3.4.2 Synthesis of graphene and graphene oxide 111

2.3.4.3 Functionalization of graphene 113

2.3.4.4 Nitrogen-doped graphene and graphene oxide 114

2.3.4.5 Characteristics of GO 115

2.4 Chitosan and Nafion 116

2.4.1 Chitosan 117

2.4.2 Nafion 118

2.5 Immobilization strategies 119

2.5.1 Methods of irreversible enzyme immobilization 119

2.5.1.1 Formation of covalent bonds 119

2.5.2 Methods of reversible immobilization 122

2.5.2.1 Adsorption (noncovalent interactions) 123

2.5.2.2 Entrapment 125

2.5.2.3 Microencapsulation 125

2.5.2.4 Affinity binding 126

2.5.2.5 Chelation or metal binding 126

2.5.2.6 Formation of disulfide bonds 127

2.6 Properties of immobilized enzymes 127

2.7 The biology of enzyme immobilization 128

References 128

2.1. Introduction


Nanotechnology enables us to build precise machines and components of molecular size. Recently, it has played an important role in the development of biosensors. The performance and sensitivity of biosensors have been enhanced by using nanomaterials through new signal transduction technologies. The development of methods and tools employed to synthesize, measure, and image nanoscale objects has led to the development of miniaturized sensors that interact with extremely small molecules that ought to be analyzed. These advances are especially exciting in the context of biosensing, where the demands are for low concentration detection and high sensitivity. The use of biomolecule-functionalized surfaces can significantly boost the specificity of the detection system but may also pose reproducibility problems and increased complexity. Many nanobiosensor architecture-based mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been in use. As nanobiosensor technology becomes more refined and reliable, it will eventually make lab-on-a-chip devices for rapid screening and sensing of a wide variety of analytes at low cost. In particular, inorganic nanomaterials such as gold nanoparticles, carbon nanotubes, graphene/metal nanoparticles, and quantum dots have been actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science (Sagadevan and Periasamy, 2014). Recently, other than inorganic nanomaterial, organic nanostructures, viz., conducting polymers, have also gained much attention. The unique electrical, optical properties and nonporous structures of conducting polymers [polyaniline (PANI), polypyrrole (PPy), etc.], biopolymers (CH) allow them to act as host matrix and promising candidates for a wide range of electronic, optoelectronic, and molecular electronic applications. The changes in electrical and optical properties of conducting polymers' interaction with oxidizing or reducing agents make them excellent materials for biosensor applications. The conducting polymers can make a transition from an initial insulating/semiconducting state to an electrically conducting state after the chemical treatment with redox active agents and have been increasingly used for optical and bio/gas sensors. However, the problem of stability and its reaction with moieties present in the environment limits the application of most of the organic materials (Kaushika et al., 2013). The integration of one kind of nanoparticles with another provides a new class of nanomaterial called nanocomposite. This strategy constitutes another useful method for the construction of biosensors with enhanced analytical performance. It offers advantages such as low background currents, great versatility, large surface, and easy surface regeneration. For instance, the integration of nanoparticles onto the conducting polymer-modified electrode is a growing research area to form the host matrix for the efficient immobilization enzymes/biomolecules. Conventionally, enzymes were directly immobilized onto the various conducting polymers matrix due to their unique characteristic properties, viz., permeation, film thickness, and charge transport properties. However, the main limitation is the high amount of biomolecule and monomer necessary for the immobilization. The presence of nanoparticles in the conducting polymer matrix offers enhanced electrochemical activity/conductivity and avoids enzyme leaking while allowing rapid diffusion of substrate. Nanocomposites thus enhance the sensitivity of the biosensors by acting as an electron accelerator between the electrode and the active site of enzymes. Capitalizing on multicomponents, organic-inorganic hybrid nanocomposite materials have exhibited a synergistic effect due to properties generated by individual counterparts that may be useful for various technological applications. The surface modification of nanoparticles by functional monolayers of polymer shells provides a means of functionalization of nanocomposites and further tunable surface properties that may allow their covalent attachment, self-assembly, and organization on surfaces.

2.2. Organic conducting polymers


Conducting polymer research dates back to the 1960s, when Pohl, Katon, and their coworkers first synthesized and characterized semiconducting polymers. The discovery of the high conductivity of polysulfurnitride (SN)x, a polymeric material containing interesting electrical properties, was a step forward for research in conducting polymers. The beginning of conductive polymer research began nearly a quarter of a century ago, when films of polyacetylene were found to exhibit profound increases in electrical conductivity when exposed to halogen vapor. Heeger, Shirakawa, and MacDiarmid produced conjugated conducting polyacetylene when monomer of acetylene was doped with bromine and iodine vapor; the resulting electrical conductivity was 10 times higher than that of the undoped monomers. After their discovery, research papers dealing with polyconjugated systems were very extensive and systematic. The trend was to understand the chemical and physical aspects, either in neutral (undoped) state or charged (doped) states. According to SCIFINDER, almost 40,000 scientific papers have...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,51 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok