Cyclic Plasticity of Engineering Materials

Experiments and Models
 
 
Standards Information Network (Verlag)
  • erschienen am 10. März 2017
  • |
  • 552 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-18082-1 (ISBN)
 
New contributions to the cyclic plasticity of engineering materials
Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field.
The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys.
Key features:
* Provides a comprehensive introduction to cyclic plasticity
* Presents Macroscopic and microscopic observations on the ratchetting of different materials
* Establishes cyclic plasticity constitutive models for different materials.
* Analysis of cyclic plasticity in engineering structures.
This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.
weitere Ausgaben werden ermittelt
Professor Guozheng Kang achieved his Bachelor Degree from Tsinghua University, China in 1992, and then he obtained his Master and PhD degrees from Southwest Jiaotong University, China in 1994 and 1997, respectively. Kang joined Southwest Jiaotong University, China as a lecturer in 1997 and was promoted to associate professor and professor in 2003 and 2005, respectively. He has received the "Alexander von Humboldt Fellowship", "Outstanding Young Investigator Award of NSFC", "Cheung Kong Chair Professor of MOE, China", and "Program for Ten Thousands Talent, China". His research interests focus on the cyclic constitutive models of advanced materials, fatigue and fracture, and meso-mechanics analysis of composites. Kang has published 5 books, 4 book chapters and 130 international journal papers. Currently, he is a member of the editorial board for five international peer-reviewed journals, including the International Journal of Plasticity, ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, Acta Mechanica Sinica and the Journal of the Mechanical Behavior of Materials.
Dr. Qianhua Kan obtained his Bachelor Degree in Civil Engineering with first class honors from Zhengzhou University in 2002. He obtained his Master Degree in Solid Mechanics from Southwest Jiaotong University in 2005 and his PhD degree from the same University in 2009. Following this, Dr. Kan joined Southwest Jiaotong University as a lecturer in 2009 and was promoted to associate professor in 2012. Dr. Kan visited Monash University (Australia) as an award holder of the Endeavour Research Fellowship for six months in 2011. His research interests include fatigue failures of smart materials, wheel-rail contact, biomechanics and finite element analysis. Dr. Kan has been awarded 5 research grants from NSFC and National Key Laboratories since 2009. Currently, he is supervising and co-supervising 13 postgraduate research students. Dr. Kan has published5 books, 2 book chapters and 45 international journal papers.
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 7]
4 - Introduction [Seite 13]
5 - I.1 Monotonic Elastoplastic Deformation [Seite 13]
6 - I.2 Cyclic Elastoplastic Deformation [Seite 15]
6.1 - I.2.1 Cyclic Softening/Hardening Features [Seite 15]
6.2 - I.2.2 Mean Stress Relaxation [Seite 18]
7 - I.2.3 Ratchetting [Seite 19]
8 - I.3 Contents of This Book [Seite 21]
9 - References [Seite 22]
10 - Chapter 1 Fundamentals of Inelastic Constitutive Models [Seite 25]
10.1 - 1.1 Fundamentals of Continuum Mechanics [Seite 25]
10.1.1 - 1.1.1 Kinematics [Seite 25]
10.1.2 - 1.1.2 Definitions of Stress Tensors [Seite 27]
10.1.3 - 1.1.3 Frame-Indifference and Objective Rates [Seite 28]
10.1.4 - 1.1.4 Thermodynamics [Seite 29]
10.1.4.1 - 1.1.4.1 The First Thermodynamic Principle [Seite 29]
10.1.4.2 - 1.1.4.2 The Second Thermodynamic Principle [Seite 29]
10.1.5 - 1.1.5 Constitutive Theory of Solid Continua [Seite 30]
10.1.5.1 - 1.1.5.1 Constitutive Theory of Elastic Solids [Seite 30]
10.1.5.2 - 1.1.5.2 Constitutive Theory of Elastoplastic Solids [Seite 31]
10.2 - 1.2 Classical Inelastic Constitutive Models [Seite 34]
10.2.1 - 1.2.1 J2 Plasticity Model [Seite 35]
10.2.2 - 1.2.2 Unified Visco-plasticity Model [Seite 36]
10.3 - 1.3 Fundamentals of Crystal Plasticity [Seite 37]
10.3.1 - 1.3.1 Single Crystal Version [Seite 37]
10.3.2 - 1.3.2 Polycrystalline Version [Seite 39]
10.4 - 1.4 Fundamentals of Meso-mechanics for Composite Materials [Seite 40]
10.4.1 - 1.4.1 Eshelby's Inclusion Theory [Seite 41]
10.4.2 - 1.4.2 Mori-Tanaka's Homogenization Approach [Seite 42]
10.5 - References [Seite 44]
11 - Chapter 2 Cyclic Plasticity of Metals: I. Macroscopic and Microscopic Observations and Analysis of Micro-mechanism [Seite 47]
11.1 - 2.1 Macroscopic Experimental Observations [Seite 47]
11.1.1 - 2.1.1 Cyclic Softening/Hardening Features in More Details [Seite 47]
11.1.1.1 - 2.1.1.1 Uniaxial Cases [Seite 47]
11.1.1.2 - 2.1.1.2 Multiaxial Cases [Seite 55]
11.1.2 - 2.1.2 Ratchetting Behaviors [Seite 59]
11.1.2.1 - 2.1.2.1 Uniaxial Cases [Seite 60]
11.1.2.2 - 2.1.2.2 Multiaxial Cases [Seite 74]
11.1.3 - 2.1.3 Thermal Ratchetting [Seite 87]
11.2 - 2.2 Microscopic Observations of Dislocation Patterns and Their Evolutions [Seite 89]
11.2.1 - 2.2.1 FCC Metals [Seite 92]
11.2.1.1 - 2.2.1.1 Uniaxial Case [Seite 92]
11.2.1.2 - 2.2.1.2 Multiaxial Case [Seite 98]
11.2.2 - 2.2.2 BCC Metals [Seite 107]
11.2.2.1 - 2.2.2.1 Uniaxial Case [Seite 107]
11.2.2.2 - 2.2.2.2 Multiaxial Case [Seite 115]
11.3 - 2.3 Micro-mechanism of Ratchetting [Seite 123]
11.3.1 - 2.3.1 FCC Metals [Seite 123]
11.3.1.1 - 2.3.1.1 Uniaxial Ratchetting [Seite 123]
11.3.1.2 - 2.3.1.2 Multiaxial Ratchetting [Seite 126]
11.3.2 - 2.3.2 BCC Metals [Seite 127]
11.3.2.1 - 2.3.2.1 Uniaxial Ratchetting [Seite 127]
11.3.2.2 - 2.3.2.2 Multiaxial Ratchetting [Seite 129]
11.4 - 2.4 Summary [Seite 130]
11.5 - References [Seite 131]
12 - Chapter 3 Cyclic Plasticity of Metals: II. Constitutive Models [Seite 135]
12.1 - 3.1 Macroscopic Phenomenological Constitutive Models [Seite 136]
12.1.1 - 3.1.1 Framework of Cyclic Plasticity Models [Seite 136]
12.1.1.1 - 3.1.1.1 Governing Equations [Seite 136]
12.1.1.2 - 3.1.1.2 Brief Review on Kinematic Hardening Rules [Seite 138]
12.1.1.3 - 3.1.1.3 Combined Kinematic and Isotropic Hardening Rules [Seite 143]
12.1.2 - 3.1.2 Viscoplastic Constitutive Model for Ratchetting at Elevated Temperatures [Seite 148]
12.1.2.1 - 3.1.2.1 Nonlinear Kinematic Hardening Rules [Seite 148]
12.1.2.2 - 3.1.2.2 Nonlinear Isotropic Hardening Rule [Seite 149]
12.1.2.3 - 3.1.2.3 Verification and Discussion [Seite 150]
12.1.3 - 3.1.3 Constitutive Models for Time?Dependent Ratchetting [Seite 156]
12.1.3.1 - 3.1.3.1 Separated Version [Seite 158]
12.1.3.2 - 3.1.3.2 Unified Version [Seite 164]
12.1.4 - 3.1.4 Evaluation of Thermal Ratchetting [Seite 173]
12.2 - 3.2 Physical Nature-Based Constitutive Models [Seite 175]
12.2.1 - 3.2.1 Crystal Plasticity-Based Constitutive Models [Seite 175]
12.2.1.1 - 3.2.1.1 Single Crystal Version [Seite 175]
12.2.1.2 - 3.2.1.2 Application to Polycrystalline Metals [Seite 179]
12.2.2 - 3.2.2 Dislocation-Based Crystal Plasticity Model [Seite 187]
12.2.2.1 - 3.2.2.1 Single Crystal Version [Seite 187]
12.2.2.2 - 3.2.2.2 Verification and Discussion [Seite 189]
12.2.3 - 3.2.3 Multi-mechanism Constitutive Model [Seite 195]
12.2.3.1 - 3.2.3.1 2M1C Model [Seite 199]
12.2.3.2 - 3.2.3.2 2M2C Model [Seite 200]
12.3 - 3.3 Two Applications of Cyclic Plasticity Models [Seite 201]
12.3.1 - 3.3.1 Rolling Contact Fatigue Analysis of Rail Head [Seite 201]
12.3.1.1 - 3.3.1.1 Experimental and Theoretical Evaluation to the Ratchetting of Rail Steels [Seite 202]
12.3.1.2 - 3.3.1.2 Finite Element Simulations [Seite 206]
12.3.2 - 3.3.2 Bending Fretting Fatigue Analysis of Axles in Railway Vehicles [Seite 209]
12.3.2.1 - 3.3.2.1 Equivalent Two-Dimensional Finite Element Model [Seite 211]
12.3.2.2 - 3.3.2.2 Finite Element Simulation to Bending Fretting Process [Seite 213]
12.3.2.3 - 3.3.2.3 Predictions to Crack Initiation Location and Fretting Fatigue Life [Seite 215]
12.4 - 3.4 Summary [Seite 221]
12.5 - References [Seite 223]
13 - Chapter 4 Thermomechanically Coupled Cyclic Plasticity of Metallic Materials at Finite Strain [Seite 231]
13.1 - 4.1 Cyclic Plasticity Model at Finite Strain [Seite 233]
13.1.1 - 4.1.1 Framework of Finite Elastoplastic Constitutive Model [Seite 233]
13.1.1.1 - 4.1.1.1 Equations of Kinematics [Seite 233]
13.1.1.2 - 4.1.1.2 Constitutive Equations [Seite 233]
13.1.1.3 - 4.1.1.3 Kinematic and Isotropic Hardening Rules [Seite 234]
13.1.1.4 - 4.1.1.4 Logarithmic Stress Rate [Seite 235]
13.1.2 - 4.1.2 Finite Element Implementation of the Proposed Model [Seite 236]
13.1.2.1 - 4.1.2.1 Discretization Equations of the Proposed Model [Seite 236]
13.1.2.2 - 4.1.2.2 Implicit Stress Integration Algorithm [Seite 239]
13.1.2.3 - 4.1.2.3 Consistent Tangent Modulus [Seite 240]
13.1.3 - 4.1.3 Verification of the Proposed Model [Seite 242]
13.1.3.1 - 4.1.3.1 Determination of Material Parameters [Seite 242]
13.1.3.2 - 4.1.3.2 Simulation of Monotonic Simple Shear Deformation [Seite 242]
13.1.3.3 - 4.1.3.3 Simulation of Cyclic Free?End Torsion and Tension-Torsion Deformations [Seite 243]
13.1.3.4 - 4.1.3.4 Simulation of Uniaxial Ratchetting at Finite Strain [Seite 247]
13.2 - 4.2 Thermomechanically Coupled Cyclic Plasticity Model at Finite Strain [Seite 251]
13.2.1 - 4.2.1 Framework of Thermodynamics [Seite 251]
13.2.1.1 - 4.2.1.1 Kinematics and Logarithmic Stress Rate [Seite 251]
13.2.1.2 - 4.2.1.2 Thermodynamic Laws [Seite 251]
13.2.1.3 - 4.2.1.3 Generalized Constitutive Equations [Seite 253]
13.2.1.4 - 4.2.1.4 Restrictions on Specific Heat and Stress Response Function [Seite 255]
13.2.2 - 4.2.2 Specific Constitutive Model [Seite 256]
13.2.2.1 - 4.2.2.1 Nonlinear Kinematic Hardening Rule [Seite 258]
13.2.2.2 - 4.2.2.2 Nonlinear Isotropic Hardening Rule [Seite 259]
13.2.3 - 4.2.3 Simulations and Discussions [Seite 261]
13.3 - 4.3 Summary [Seite 273]
13.4 - References [Seite 274]
14 - Chapter 5 Cyclic Viscoelasticity-Viscoplasticity of Polymers [Seite 279]
14.1 - 5.1 Experimental Observations [Seite 280]
14.1.1 - 5.1.1 Cyclic Softening/Hardening Features [Seite 280]
14.1.1.1 - 5.1.1.1 Uniaxial Strain-Controlled Cyclic Tests [Seite 281]
14.1.1.2 - 5.1.1.2 Multiaxial Strain-Controlled Cyclic Tests [Seite 285]
14.1.2 - 5.1.2 Ratchetting Behaviors [Seite 287]
14.1.2.1 - 5.1.2.1 Uniaxial Ratchetting [Seite 287]
14.1.2.2 - 5.1.2.2 Multiaxial Ratchetting [Seite 300]
14.2 - 5.2 Cyclic Viscoelastic Constitutive Model [Seite 311]
14.2.1 - 5.2.1 Original Schapery's Model [Seite 314]
14.2.1.1 - 5.2.1.1 Main Equations of Schapery's Viscoelastic Model [Seite 314]
14.2.1.2 - 5.2.1.2 Determination of Material Parameters [Seite 315]
14.2.1.3 - 5.2.1.3 Simulations and Discussion [Seite 315]
14.2.2 - 5.2.2 Extended Schapery's Model [Seite 316]
14.2.2.1 - 5.2.2.1 Main Modification [Seite 316]
14.2.2.2 - 5.2.2.2 Simulations and Discussion [Seite 319]
14.3 - 5.3 Cyclic Viscoelastic-Viscoplastic Constitutive Model [Seite 322]
14.3.1 - 5.3.1 Main Equations [Seite 322]
14.3.1.1 - 5.3.1.1 Viscoelasticity [Seite 325]
14.3.1.2 - 5.3.1.2 Viscoplasticity [Seite 326]
14.3.2 - 5.3.2 Verification and Discussion [Seite 327]
14.3.2.1 - 5.3.2.1 Determination of Material Parameters [Seite 327]
14.3.2.2 - 5.3.2.2 Simulations and Discussion [Seite 328]
14.4 - 5.4 Summary [Seite 339]
14.5 - References [Seite 339]
15 - Chapter 6 Cyclic Plasticity of Particle-Reinforced Metal Matrix Composites [Seite 343]
15.1 - 6.1 Experimental Observations [Seite 344]
15.1.1 - 6.1.1 Cyclic Softening/Hardening Features [Seite 344]
15.1.2 - 6.1.2 Ratchetting Behaviors [Seite 347]
15.1.2.1 - 6.1.2.1 Uniaxial Ratchetting at Room Temperature [Seite 347]
15.1.2.2 - 6.1.2.2 Uniaxial Ratchetting at 573?K [Seite 350]
15.2 - 6.2 Finite Element Simulations [Seite 353]
15.2.1 - 6.2.1 Time-Independent Cyclic Plasticity [Seite 354]
15.2.1.1 - 6.2.1.1 Main Equations of the Time-Independent Cyclic Plasticity Model [Seite 355]
15.2.1.2 - 6.2.1.2 Basic Finite Element Model and Simulations [Seite 358]
15.2.1.3 - 6.2.1.3 Effect of Interfacial Bonding [Seite 363]
15.2.1.4 - 6.2.1.4 Results with 3D Multiparticle Finite Element Model [Seite 374]
15.2.2 - 6.2.2 Time-Dependent Cyclic Plasticity [Seite 379]
15.2.2.1 - 6.2.2.1 Finite Element Model [Seite 380]
15.2.2.2 - 6.2.2.2 Simulations and Discussion [Seite 380]
15.3 - 6.3 Meso-mechanical Time-Independent Plasticity Model [Seite 385]
15.3.1 - 6.3.1 Framework of the Model [Seite 385]
15.3.1.1 - 6.3.1.1 Time-Independent Cyclic Plasticity Model for the Matrix [Seite 386]
15.3.1.2 - 6.3.1.2 Extension of the Mori-Tanaka Homogenization Approach [Seite 386]
15.3.2 - 6.3.2 Numerical Implementation of the Model [Seite 388]
15.3.2.1 - 6.3.2.1 Under the Strain-Controlled Loading Condition [Seite 388]
15.3.2.2 - 6.3.2.2 Under the Stress-Controlled Loading Condition [Seite 390]
15.3.2.3 - 6.3.2.3 Continuum and Algorithmic Consistent Tangent Operators [Seite 391]
15.3.3 - 6.3.3 Verification and Discussion [Seite 392]
15.3.3.1 - 6.3.3.1 Determination of Material Parameters [Seite 392]
15.3.3.2 - 6.3.3.2 Simulations and Discussion [Seite 392]
15.4 - 6.4 Meso-mechanical Time-Dependent Plasticity Model [Seite 399]
15.4.1 - 6.4.1 Framework of the Model [Seite 400]
15.4.1.1 - 6.4.1.1 Time-Dependent Cyclic Plasticity Model for the Matrix [Seite 401]
15.4.1.2 - 6.4.1.2 Mori-Tanaka Homogenization Approach [Seite 402]
15.4.2 - 6.4.2 Numerical Implementation of the Model [Seite 402]
15.4.2.1 - 6.4.2.1 Generalized Incrementally Affine Linearization Formulation [Seite 402]
15.4.2.2 - 6.4.2.2 Extension of Mori-Tanaka's Model [Seite 403]
15.4.2.3 - 6.4.2.3 Algorithmic Consistent Tangent Operator and Its Regularization [Seite 405]
15.4.2.4 - 6.4.2.4 Numerical Integration of the Viscoplasticity Model [Seite 406]
15.4.3 - 6.4.3 Verification and Discussion [Seite 407]
15.4.3.1 - 6.4.3.1 Under Monotonic Tension [Seite 407]
15.4.3.2 - 6.4.3.2 Under Strain-Controlled Cyclic Loading Conditions [Seite 407]
15.4.3.3 - 6.4.3.3 Time-Dependent Uniaxial Ratchetting [Seite 407]
15.5 - 6.5 Summary [Seite 410]
15.6 - References [Seite 413]
16 - Chapter 7 Thermomechanical Cyclic Deformation of Shape-Memory Alloys [Seite 417]
16.1 - 7.1 Experimental Observations [Seite 419]
16.1.1 - 7.1.1 Degeneration of Super-Elasticity and Transformation Ratchetting [Seite 419]
16.1.1.1 - 7.1.1.1 Thermomechanical Cyclic Deformation Under Strain-Controlled Loading Conditions [Seite 419]
16.1.1.2 - 7.1.1.2 Thermomechanical Cyclic Deformation Under Uniaxial Stress-Controlled Loading Conditions [Seite 423]
16.1.1.3 - 7.1.1.3 Thermomechanical Cyclic Deformation Under Multiaxial Stress-Controlled Loading Conditions [Seite 431]
16.1.2 - 7.1.2 Rate-Dependent Cyclic Deformation of Super?Elastic NiTi SMAs [Seite 438]
16.1.2.1 - 7.1.2.1 Thermomechanical Cyclic Deformation Under Strain-Controlled Loading Conditions [Seite 440]
16.1.2.2 - 7.1.2.2 Thermomechanical Cyclic Deformation Under Stress-Controlled Loading Conditions [Seite 446]
16.1.3 - 7.1.3 Thermomechanical Cyclic Deformation of Shape-Memory NiTi SMAs [Seite 453]
16.1.3.1 - 7.1.3.1 Pure Mechanical Cyclic Deformation under Stress-Controlled Loading Conditions [Seite 453]
16.1.3.2 - 7.1.3.2 Thermomechanical Cyclic Deformation with Thermal Cycling and Axial Stress [Seite 463]
16.2 - 7.2 Phenomenological Constitutive Models [Seite 464]
16.2.1 - 7.2.1 Pure Mechanical Version [Seite 464]
16.2.1.1 - 7.2.1.1 Thermodynamic Equations and Internal Variables [Seite 464]
16.2.1.2 - 7.2.1.2 Main Equations of Constitutive Model [Seite 465]
16.2.1.3 - 7.2.1.3 Predictions and Discussions [Seite 469]
16.2.2 - 7.2.2 Thermomechanical Version [Seite 476]
16.2.2.1 - 7.2.2.1 Strain Definitions [Seite 476]
16.2.2.2 - 7.2.2.2 Evolution Rules of Transformation and Transformation-Induced Plastic Strains [Seite 481]
16.2.2.3 - 7.2.2.3 Simplified Temperature Field [Seite 485]
16.2.2.4 - 7.2.2.4 Predictions and Discussions [Seite 489]
16.3 - 7.3 Crystal Plasticity-Based Constitutive Models [Seite 501]
16.3.1 - 7.3.1 Pure Mechanical Version [Seite 501]
16.3.1.1 - 7.3.1.1 Strain Definitions [Seite 501]
16.3.1.2 - 7.3.1.2 Evolution Rules of Internal Variables [Seite 504]
16.3.1.3 - 7.3.1.3 Explicit Scale Transition Rule [Seite 506]
16.3.1.4 - 7.3.1.4 Verifications and Discussions [Seite 507]
16.3.2 - 7.3.2 Thermomechanical Version [Seite 512]
16.3.2.1 - 7.3.2.1 Strain Definitions [Seite 514]
16.3.2.2 - 7.3.2.2 Evolution Rules of Internal Variables [Seite 515]
16.3.2.3 - 7.3.2.3 Thermomechanical Coupled Analysis for Temperature Field [Seite 517]
16.3.2.4 - 7.3.2.4 Verifications and Discussions [Seite 519]
16.4 - 7.4 Summary [Seite 536]
16.5 - References [Seite 537]
17 - Index [Seite 543]
18 - EULA [Seite 551]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

100,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen