Designing Machine Learning Systems with Python

Packt Publishing Limited
  • 1. Auflage
  • |
  • erschienen am 6. April 2016
  • |
  • 232 Seiten
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-78588-078-0 (ISBN)
Design efficient machine learning systems that give you more accurate resultsAbout This BookGain an understanding of the machine learning design processOptimize machine learning systems for improved accuracyUnderstand common programming tools and techniques for machine learningDevelop techniques and strategies for dealing with large amounts of data from a variety of sourcesBuild models to solve unique tasksWho This Book Is ForThis book is for data scientists, scientists, or just the curious. To get the most out of this book, you will need to know some linear algebra and some Python, and have a basic knowledge of machine learning concepts.What You Will LearnGain an understanding of the machine learning design processOptimize the error function of your machine learning systemUnderstand the common programming patterns used in machine learningDiscover optimizing techniques that will help you get the most from your dataFind out how to design models uniquely suited to your taskIn DetailMachine learning is one of the fastest growing trends in modern computing. It has applications in a wide range of fields, including economics, the natural sciences, web development, and business modeling. In order to harness the power of these systems, it is essential that the practitioner develops a solid understanding of the underlying design principles.There are many reasons why machine learning models may not give accurate results. By looking at these systems from a design perspective, we gain a deeper understanding of the underlying algorithms and the optimisational methods that are available. This book will give you a solid foundation in the machine learning design process, and enable you to build customised machine learning models to solve unique problems. You may already know about, or have worked with, some of the off-the-shelf machine learning models for solving common problems such as spam detection or movie classification, but to begin solving more complex problems, it is important to adapt these models to your own specific needs. This book will give you this understanding and more.Style and approachThis easy-to-follow, step-by-step guide covers the most important machine learning models and techniques from a design perspective.
  • Englisch
  • Birmingham
  • |
  • Großbritannien
978-1-78588-078-0 (9781785880780)
1785880780 (1785880780)
weitere Ausgaben werden ermittelt
David Julian is currently working on a machine learning project with Urban Ecological Systems Ltd and Blue Smart Farms ( to detect and predict insect infestation in greenhouse crops. He is currently collecting a labeled training set that includes images and environmental data (temperature, humidity, soil moisture, and pH), linking this data to observations of infestation (the target variable), and using it to train neural net models. The aim is to create a model that will reduce the need for direct observation, be able to anticipate insect outbreaks, and subsequently control conditions. There is a brief outline of the project at David also works as a data analyst, I.T. consultant, and trainer.
  • Cover
  • Copyright
  • Credits
  • About the Author
  • About the Reviewer
  • Table of Contents
  • Preface
  • Chapter 1: Thinking in Machine Learning
  • The human interface
  • Design principles
  • Types of questions
  • Are you asking the right question?
  • Tasks
  • Classification
  • Regression
  • Clustering
  • Dimensionality reduction
  • Errors
  • Optimization
  • Linear programming
  • Models
  • Features
  • Unified modeling language
  • Class diagrams
  • Object diagrams
  • Activity diagrams
  • State diagrams
  • Summary
  • Chapter 2: Tools and Techniques
  • Python for machine learning
  • IPython console
  • Installing the SciPy stack
  • NumPY
  • Constructing and transforming arrays
  • Mathematical operations
  • Matplotlib
  • Pandas
  • SciPy
  • Scikit-learn
  • Summary
  • Chapter 3: Turning Data into Information
  • What is data?
  • Big data
  • Challenges of big data
  • Data volume
  • Data velocity
  • Data variety
  • Data models
  • Data distributions
  • Data from databases
  • Data from the Web
  • Data from natural language
  • Data from images
  • Data from application programming interfaces
  • Signals
  • Data from sound
  • Cleaning data
  • Visualizing data
  • Summary
  • Chapter 4: Models - Learning from Information
  • Logical models
  • Generality ordering
  • Version space
  • Coverage space
  • PAC learning and computational complexity
  • Tree models
  • Purity
  • Rule models
  • The ordered list approach
  • Set-based rule models
  • Summary
  • Chapter 5: Linear Models
  • Introducing least squares
  • Gradient descent
  • The normal equation
  • Logistic regression
  • The Cost function for logistic regression
  • Multiclass classification
  • Regularization
  • Summary
  • Chapter 6: Neural Networks
  • Getting started with neural networks
  • Logistic units
  • Cost function
  • Minimizing the cost function
  • Implementing a neural network
  • Gradient checking
  • Other neural net architectures
  • Summary
  • Chapter 7: Features - How Algorithms See the World
  • Feature types
  • Quantitative features
  • Ordinal features
  • Categorical features
  • Operations and statistics
  • Structured features
  • Transforming features
  • Discretization
  • Normalization
  • Calibration
  • Principle component analysis
  • Summary
  • Chapter 8: Learning with Ensembles
  • Ensemble types
  • Bagging
  • Random forests
  • Extra trees
  • Boosting
  • Adaboost
  • Gradient boosting
  • Ensemble strategies
  • Other methods
  • Summary
  • Chapter 9: Design Strategies and Case Studies
  • Evaluating model performance
  • Model selection
  • Gridsearch
  • Learning curves
  • Real-world case studies
  • Building a recommender system
  • Content-based filtering
  • Collaborative filtering
  • Reviewing the case study
  • Insect detection in greenhouses
  • Reviewing the case study
  • Machine learning at a glance
  • Summary
  • Index

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

35,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok