Neurotoxicity of Nanomaterials and Nanomedicine

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 3. Oktober 2016
  • |
  • 358 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804620-3 (ISBN)
 

Neurotoxicity of Nanomaterials and Nanomedicine presents an overview of the exciting research in neurotoxicity and nanomaterials. Nanomaterials have been extensively used in medicine, including diagnosis probes, drug carriers, and embedded materials. While some have been approved for clinical use, most nanomaterials are waiting to be transferred from lab to clinic. However, the toxicity is a main barrier that restricts the translation.

This comprehensive book includes chapters on the most commonly used individual nanoparticles, with information on the applications, neurotoxicity, and related mechanisms of each, providing the most in-depth and current information available. The book examines the pathways that nanomaterials enter into, and eliminate, from the brain, along with the strategies that could reduce the neurotoxicity of nanomaterials.

Providing a background to the subject, detailed information, and ideas for future directions in research, the book is essential for students and researchers in toxicology, and for those in medicine, neurology, pharmacology, pharmaceutical science, and materials science who are researching nanomaterials.


  • Presents a thorough discussion of the most common nanoparticles in the brain and their neurotoxicology
  • Includes the most common nanoparticles, their applications, and mechanisms
  • Provides one of the first books to focus on nanomedicine and neurotoxicity
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 4,75 MB
978-0-12-804620-3 (9780128046203)
0128046201 (0128046201)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Neurotoxicity of Nanomaterials and Nanomedicine
  • Neurotoxicity of Nanomaterialsand Nanomedicine
  • Copyright
  • Contents
  • List of Contributors
  • Biography
  • Xinguo Jiang, BS
  • Huile Gao, PhD
  • Preface
  • Introduction and Overview
  • HOW DO NANOMATERIALS AND NANOMEDICINES ENTER INTO AND GET EXCRETED FROM BRAIN?
  • WHAT IS THE NEUROTOXICITY OF NANOMATERIALS?
  • CONCLUSION
  • 1 - The Medical Applications of Nanomaterials in the Central Nervous System
  • 1. INTRODUCTION
  • 2. SMALL CHEMICAL DRUGS DELIVERY
  • 2.1 Natural Nanomaterials
  • 2.2 Anionic and Neutral Polymers
  • 2.3 Dendrimers
  • 2.4 Metal Nanoparticles
  • 2.5 Carbon-Based Inorganic Nanomaterials
  • 3. PEPTIDE AND PROTEIN DELIVERY
  • 3.1 Natural Nanomaterials
  • 3.2 Polymers
  • 4. GENE DELIVERY
  • 4.1 Lipid Nanomaterials
  • 4.2 Cationic Polymers
  • 4.3 Dendrimers
  • 4.4 Other Materials
  • 5. NANOMATERIALS AS IMAGING PROBE
  • 5.1 Iron Oxide Nanoparticles
  • 5.2 Quantum Dots
  • 5.3 Carbon Dots
  • 6. CONCLUSION AND PERSPECTIVE
  • REFERENCES
  • 2 - The Route of Nanomaterials Entering Brain
  • 1. INTRODUCTION
  • 2. TRANSPORTER-MEDIATED?TRANSCYTOSIS
  • 2.1 Hexose Transporters
  • 2.2 Choline Transporters
  • 2.3 Amino Acid Transporters
  • 3. RECEPTOR-MEDIATED TRANSCYTOSIS
  • 3.1 Transferrin Receptor
  • 3.2 Insulin Receptor
  • 3.3 Low-Density Lipoprotein Receptor-Related Proteins
  • 3.4 Nicotine Acetylcholine Receptor
  • 4. ADSORPTIVE-MEDIATED?TRANSCYTOSIS
  • 4.1 Cell-Penetrating Peptides
  • 4.2 Cationic Proteins
  • 4.3 Methods That Improve the Nonselectivity of AMT
  • 5. INTRANASAL DRUG DELIVERY
  • 6. INHIBITING THE FUNCTION OF THE BLOOD-BRAIN BARRIER
  • 6.1 Inhibition of Efflux Pumps
  • 6.2 Disturbing the Structure?of the Blood-Brain Barrier
  • 7. NANOMATERIALS ENTERING?THE BRAIN UNDER PATHOLOGICAL?CONDITIONS
  • 8. SUMMARY AND PROSPECTS
  • REFERENCES
  • 3 - The Distribution and Elimination of Nanomaterials in Brain
  • 1. BLOOD-BRAIN BARRIER
  • 2. EXISTING PATHWAYS FOR THE BRAIN DELIVERY OF NANOMATERIALS
  • 2.1 Entering the CNS Across the BBB
  • 2.2 Nose-to-Brain Delivery
  • 2.3 Direct Injection or Implantation Into the CNS
  • 3. DISTRIBUTION OF NANOMATERIALS IN BRAIN
  • 3.1 Size
  • 3.2 Surface Charge
  • 3.3 Shape
  • 3.4 Targeting Ligands
  • 3.5 Administration Routes
  • 3.6 Chronobiology
  • 3.7 Disease Conditions
  • 4. ELIMINATION OF NANOMATERIALS IN BRAIN
  • 4.1 Deformability and Biodegradability of the Matrix
  • 4.2 Size and Surface Charge
  • 4.3 Targeting Ligands
  • 4.4 Conscious State
  • 4.5 Disease Conditions
  • 4.6 Brian Regional Distribution
  • 5. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 4 - Current Perspective on Nanomaterial-Induced Adverse Effects: Neurotoxicity as a Case Example
  • 1. NANOTOXICOLOGY
  • 2. NEUROTOXICOLOGY
  • 3. BRAIN AS THE TARGET OF NPS
  • 4. TOXICITY OF NANOPARTICLES
  • 4.1 Toxicity of Carbon-Based Nanoparticles
  • 4.1.1 Fullerenes
  • 4.1.2 Carbon Nanotubes
  • 4.1.3 Graphene
  • 4.2 Metal-Based?Nanoparticles
  • 4.2.1 Silver?Nanoparticles
  • 4.2.2 Gold?Nanoparticles
  • 4.2.3 Metal Oxide Nanoparticles
  • 4.3 Quantum Dots
  • 4.4 Particulate Matter
  • 5. MECHANISMS OF?NANOTOXICITY
  • 6. RELEASE OF NANOPARTICLES?INTO ENVIRONMENT
  • 7. FACTORS CONTRIBUTING TO NANOTOXICITY
  • 8. INTERACTION OF?NANOPARTICLES WITH OTHER CHEMICALS IN THE?ENVIRONMENT
  • 9. SAFETY CONSIDERATIONS
  • 10. REDUCING EXPOSURE AND NEUROTOXICITY
  • REFERENCES
  • 5 - Toxicity of Titanium Dioxide Nanoparticles on Brain
  • 1. INTRODUCTION
  • 2. APPLICATIONS OF TIO2?NANOPARTICLES
  • 3. MAIN ROUTES OF TIO2?NANOPARTICLES INTO THE BRAIN
  • 3.1 Translocation of TiO2 Nanoparticles From the?Blood to the Brain
  • 3.2 Axonal Translocation of?TiO2 Nanoparticles From?the Nose to the Brain
  • 3.3 Translocation Into the Brain?of Offspring Through the?Placental Barrier
  • 4. BIODISTRIBUTION AFTER DIFFERENT ADMINISTRATION ROUTES AND ELIMINATION RATE OF TIO2 NANOPARTICLES FROM THE BRAIN
  • 4.1 Biodistribution
  • 4.2 Elimination
  • 5. MAIN MECHANISMS UNDERLYING NEUROTOXICITY OF TIO2 NANOPARTICLES
  • 5.1 Oxidative Stress
  • 5.2 Apoptosis and Autophagy
  • 5.3 Immune Mechanism
  • 5.4 Activated Signaling?Pathways
  • 6. MAJOR FACTORS INFLUENCING THE NEUROTOXICITY OF TIO2 NANOPARTICLES
  • 6.1 Crystal Type
  • 6.2 Size of Nanoparticles
  • 6.3 Shape and Surface?Modification
  • 6.4 Administration Route
  • 7. SUMMARY
  • REFERENCES
  • 6 - The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles
  • 1. IRON OXIDE NANOPARTICLES
  • 2. APPLICATIONS OF IRON OXIDE NANOPARTICLES
  • 2.1 Magnetic Resonance?Imaging Contrast Agent
  • 2.2 Hyperthermia
  • 2.3 Drug Delivery
  • 3. MECHANISMS OF ION TOXICITY
  • 4. NEUROTOXICITY
  • 4.1 Mechanisms and Pathways?of ION Entry to the Brain
  • 4.2 In Vitro Studies on ION Neurotoxicity
  • 4.2.1 Neurons
  • 4.2.2 Astrocytes
  • 4.2.3 Microglia
  • 4.2.4 Oligodendrocytes
  • 4.3 In Vivo Studies on ION Neurotoxicity
  • 5. CONCLUSIONS
  • REFERENCES
  • 7 - The Application, Neurotoxicity, and Related Mechanisms of Silver Nanoparticles
  • 1. INTRODUCTION
  • 2. CURRENT AND FUTURE APPLICATIONS OF AGNPS?IN MEDICINE
  • 3. BIODISTRIBUTION OF AGNPS IN MAMMALIAN ORGANISMS
  • 4. AGNP-INDUCED NEUROTOXICITY
  • 4.1 Adverse Effects of AgNPs?in Brain Cells
  • 4.2 AgNPs Influence Blood-Brain Barrier Function
  • 5. CELLULAR AND MOLECULAR MECHANISMS OF AGNPS NEUROTOXICITY
  • 5.1 Mitochondria, Oxidative?Stress, Inflammation, and?Cell Death
  • 5.2 Interactions With Cellular Calcium and NMDA?Glutamate Receptors
  • 5.3 AgNP-Induced Neurodegeneration
  • 6. PHYSICOCHEMICAL PARAMETERS INFLUENCING THE TOXICITY OF?SILVER NANOPARTICLES
  • 6.1 Size
  • 6.2 Shape and Coating
  • 6.3 Release of Ions
  • 7. SUMMARY
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 8 - The Applications, Neurotoxicity, and Related Mechanism of Gold Nanoparticles
  • 1. INTRODUCTION
  • 2. SYNTHESIS
  • 3. ADVANTAGES
  • 4. PHARMACOKINETICS
  • 4.1 Absorption
  • 4.2 Distribution
  • 4.3 Metabolism
  • 4.4 Elimination
  • 5. APPLICATIONS
  • 5.1 Electronics
  • 5.2 For Labeling
  • 5.3 Sensors
  • 5.4 As Delivery Vehicle
  • 5.5 Probes
  • 5.6 As Heat Source
  • 5.7 Catalysis
  • 6. MECHANISM OF CELLULAR UPTAKE
  • 6.1 Phagocytosis
  • 6.2 Pinocytosis
  • 6.2.1 Macropinocytosis
  • 6.2.2 Clathrin-Mediated Endocytosis
  • 6.3 Caveolae-Dependent Endocytosis
  • 6.4 Adhesive Interactions
  • 7. GENERAL MECHANISM OF TOXICITY
  • 7.1 Oxidative Stress
  • 7.2 Disruption of Lipid Bilayer
  • 7.3 Necrosis/Apoptosis
  • 7.4 Mitochondrial Dysfunction
  • 7.5 DNA Damage
  • 7.6 Endocrine Disruption
  • 8. FACTORS AFFECTING TOXICITY
  • 8.1 Size
  • 8.2 Shape
  • 8.3 Surface Charge
  • 8.4 Surface Chemistry
  • 9. NEUROTOXICITY
  • 9.1 Neuronal Uptake
  • 9.1.1 Neuronal Uptake?via Olfactory Nerves
  • 9.1.2 Neuronal Uptake via Blood-Brain Barrier
  • 9.2 General Neurotoxicity
  • 9.3 Neurological Pathology
  • 9.3.1 Astrogliosis
  • 9.3.2 Generation of?Seizure Activity
  • 9.3.3 Cognition Defect
  • 10. CONCLUSION
  • LIST OF ABBREVIATIONS
  • REFERENCES
  • 9 - The Applications, Neurotoxicity, and Related Mechanisms of Manganese-Containing Nanoparticles
  • 1. CHEMICAL PROPERTIES AND APPLICATIONS OF MANGANESE
  • 1.1 Chemical Properties of Manganese
  • 1.2 Applications of Manganese in Industrial, Research, and Medical Purposes
  • 2. ENVIRONMENTAL AND OCCUPATIONAL EXPOSURE TO MANGANESE
  • 2.1 Overview
  • 2.2 Environmental Exposure in Industry Concerning Manganese
  • 2.3 Environmental Exposure Caused by MMT Exhaust
  • 3. MANGANESE-ASSOCIATED NEURODISORDERS AND PATHOPHYSIOLOGY OF MANGANESE NEUROTOXICITY
  • 3.1 Manganese and Neurological Disorders
  • 3.2 Mechanisms of Neurological Disorders by Manganese
  • 4. NEUROTOXICITY MECHANISMS OF MANGANESE NANOPARTICLES
  • 4.1 Manganese Nanoparticles
  • 4.2 Transport of Manganese Into Central Nervous System
  • 4.3 Manganese Nanoparticles and Neurotoxicity and Perspectives of Manganese Nanoparticle
  • 5. SUMMARY AND CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 10 - The Application, Neurotoxicity, and Related Mechanism of Silica Nanoparticles
  • 1. INTRODUCTION
  • 2. APPLICATIONS OF SILICA NANOPARTICLES
  • 2.1 Drug Delivery
  • 2.2 Gene Delivery
  • 2.3 Bioimaging
  • 2.4 Cosmetics
  • 3. NEUROTOXICITY OF SILICA NANOPARTICLES
  • 3.1 The Absorption, Distribution, Metabolism, and Excretion of Silica Nanoparticles
  • 3.2 Factors Affecting?Neurotoxicity of Silica Nanoparticles
  • 3.3 Possible Mechanism of Neurotoxicity by Silica Nanoparticles
  • 4. CYTOTOXICITY OF SILICA NANOPARTICLES
  • 4.1 Factors Contributing to Cytotoxicity of Silica Nanoparticles
  • 4.2 Possible Mechanism of Cytotoxicity of Silica Nanoparticles
  • 5. SUMMARY
  • REFERENCES
  • 11 - The Synthesis, Application, and Related Neurotoxicity of Carbon Nanotubes
  • 1. INTRODUCTION
  • 2. STRUCTURE OF CNTS
  • 3. SYNTHESIS
  • 4. MODIFICATION/FUNCTIONALIZATION
  • 4.1 Covalent Functionalization
  • 4.2 Noncovalent?Functionalization
  • 5. CARBON NANOTUBE-RELATED APPLICATIONS
  • 5.1 Tissue Engineering
  • 5.1.1 Bone Tissue?Engineering
  • 5.1.2 Neural Tissue Engineering
  • 5.2 Cancer Diagnostics and Treatment
  • 5.2.1 Target Recognition
  • 5.2.2 Drug Loading and Release
  • 6. TOXICITY
  • 6.1 Neurotoxicity
  • 6.1.1 In Vivo Studies
  • 6.1.2 In Vitro Studies
  • 6.2 Other Toxicity Studies
  • 7. CONCLUSIONS AND FUTURE?DIRECTIONS
  • REFERENCES
  • 12 - THE APPLICATION, NEUROTOXICITY, AND RELATED MECHANISM OF CATIONIC POLYMERS*
  • 1.1 Chitosan
  • 1.2 Poly(l-lysine)
  • 1.3 Polyethylenimines
  • 1.4 Polypropylenimine
  • 1.5 Poly(lactic-co-glycolic acid)
  • 1.6 Poly(2-(dimethylamino)ethyl methacrylate)
  • 1.7 Poly(ester amine)s
  • 1.8 Poly(amidoamine)?Dendrimers
  • 2. APPLICATIONS OF CATIONIC?POLYMERS
  • 2.1 Gene Delivery
  • 2.1.1 Chitosan
  • 2.1.2 Poly(l-lysine)
  • 2.1.3 Polyethyleneimine
  • 2.1.4 Polypropylenimine
  • 2.1.5 Poly(lactic-co-glycolic acid)
  • 2.1.6 Poly(2-(dimethylamino)ethyl methacrylate
  • 2.1.7 Poly(ester amine)s
  • 2.1.8 PAMAM Dendrimers
  • 2.2 Drug Delivery
  • 2.2.1 Physical Encapsulation
  • 2.2.2 Chitosan
  • 2.2.3 Poly(lactic-co-glycolic acid)
  • 2.2.4 Polypropylenimine
  • 2.2.5 PAMAM Dendrimers
  • 2.2.6 Chemical Conjugation
  • 2.2.7 Physical Encapsulation Combined With Chemical Conjugation
  • 2.3 Gene Transfer Combined?With Drug Delivery
  • 2.4 Diagnostic Imaging
  • 2.4.1 Chitosan
  • 2.4.2 Poly(l-lysine)
  • 2.4.3 Polyethyleneimine
  • 2.4.4 Polypropylenimine
  • 2.4.5 Poly(lactic-co-glycolic acid)
  • 2.4.6 Poly(2-(dimethylamino)ethyl methacrylate)
  • 2.4.7 PAMAM Dendrimers
  • 2.5 Antimicrobial Agents
  • 2.5.1 Chitosan
  • 2.5.2 Poly(l-lysine)
  • 2.5.3 Polyethyleneimine
  • 2.5.4 Polypropylenimine
  • 2.5.5 Poly(lactic-co-glycolic acid)
  • 2.5.6 Poly(2-(dimethylamino)ethyl methacrylate)
  • 2.5.7 Poly(ester amine)s
  • 2.5.8 PAMAM Dendrimers
  • 3. NEUROTOXICITY OF CATIONIC?POLYMERS
  • 3.1 Neurotoxicity of Chitosan
  • 3.2 Neurotoxicity of PEI
  • 3.3 Neurotoxicity of PLGA
  • 3.4 Neurotoxicity of Polystyrene
  • 3.5 Neurotoxicity of PAMAM Dendrimers
  • 4. MECHANISMS OF CATIONIC?POLYMERS-INDUCED NEUROTOXICITY
  • 4.1 Physicochemical Mechanisms of Cationic Polymers-Induced Neurotoxicity
  • 4.1.1 Charge
  • 4.1.2 Size
  • 4.1.3 Shape
  • 4.2 Biochemical Mechanisms of Cationic Polymers-Induced Neurotoxicity
  • 4.2.1 Apoptosis
  • 4.2.2 Necrosis
  • 4.2.3 Autophagy
  • 4.2.4 Oxidative Stress
  • 4.2.5 Inflammation and Inflammasome
  • 4.2.5.1 Inflammation
  • 4.2.5.2 Inflammasome
  • 5. CONCLUSION
  • REFERENCES
  • 13 - Perspective on Strategies to Reduce the Neurotoxicity of Nanomaterials and Nanomedicines
  • 1. INTRODUCTION
  • 2. REDUCING BRAIN EXPOSURE
  • 2.1 Reducing Inhalation of Nanomaterials
  • 2.2 Reducing Blood-Brain Barrier Penetration
  • 2.3 Improving Cell Selectivity in Brain
  • 3. REDUCING THE INHERENT TOXICITY?OF NANOMATERIALS
  • 3.1 Composition of?Nanomaterials
  • 3.2 Size and Shape
  • 3.3 Surface Property of Nanomaterials
  • 4. CONCLUSION
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok