International Review of Cell and Molecular Biology

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 16. November 2015
  • |
  • 300 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-802476-8 (ISBN)
 

International Review of Cell and Molecular Biology presents comprehensive reviews and current advances in cell and molecular biology. Articles address structure and control of gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and cell transformation and growth.

The series has a worldwide readership, maintaining a high standard by publishing invited articles on important and timely topics authored by prominent cell and molecular biologists.


  • Includes insights from the foremost scientists in the field, with specific discussions of the current state of research on gene expression, nucleocytoplasmic interactions, control of cell development and differentiation, and more
  • Provides comprehensive reviews and current advances
  • Presents a wide range of perspectives on specific subjects
  • Valuable reference material for advanced undergraduates, graduate students, and professional scientists
1937-6448
  • Englisch
  • USA
Elsevier Science
  • 12,44 MB
978-0-12-802476-8 (9780128024768)
0128024763 (0128024763)
weitere Ausgaben werden ermittelt
  • Front Cover
  • INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY
  • International Review of Cell and Molecular Biology
  • Contents
  • CONTRIBUTORS
  • One - From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology
  • 1. INTRODUCTION
  • 2. 2D CELL CULTURE
  • 2.1 Culture of Immortalized Cell Lines versus Primary Cell Culture
  • 2.2 Protozoa as Alternative Infection Models
  • 2.3 Coculture Infection Models
  • 2.3.1 Coculture-based generation of tissue barriers
  • 2.3.2 Coculture of adherent cells and neutrophiles in suspension
  • 3. 3D CELL CULTURE
  • 3.1 Benefits and Limitations of 3D Scaffold
  • 3.1.1 Coculture-based reconstruction of BBB with matrix scaffold
  • 3.1.2 Requirements of 3D tissue models generating air-liquid surface
  • 3.2 Microgravity-Variations of 3D Cell Culture Models
  • 4. ORGAN EQUIVALENTS AND TISSUE EXPLANTS
  • 4.1 Organoids and Tissue Equivalents Providing Complex Cell Systems "En Miniature"
  • 4.2 Tissue Explants-Piece of Reality
  • 4.3 Integration of Microfluidic Systems in 2D and 3D Cell Culture
  • 5. CONCLUDING REMARKS AND FUTURE PERSPECTIVES
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Two - Science and Art of Cell-Based Ocular Surface Regeneration
  • 1. INTRODUCTION
  • 2. ANATOMY AND PATHOLOGY OF OCULAR SURFACE
  • 2.1 Preocular Tear Film
  • 2.2 Conjunctival Epithelium
  • 2.3 Limbus
  • 3. CELL-BASED THERAPIES FOR OCULAR SURFACE REGENERATION
  • 3.1 Embryonic Stem Cells
  • 3.2 Induced Pluripotent Stem Cells
  • 3.3 Mesenchymal Stem Cells
  • 3.3.1 MSCs in corneal reconstruction
  • 3.3.2 MSCs in LSCD
  • 4. NEW MATERIAL TECHNOLOGIES FOR OCULAR SURFACE RECONSTRUCTION
  • 4.1 Biological Materials
  • 4.1.1 Fibrin
  • 4.1.2 Collagen-based materials
  • 4.1.3 Silk fibroin-based materials
  • 4.2 Synthetic Materials
  • 4.2.1 Contact lenses
  • 4.2.2 Polylactic glycolic acid
  • 4.2.3 Thermoresponsive substrate
  • 4.3 Engineering Limbal Niche
  • 5. ANIMAL MODELS FOR LSCD
  • 5.1 LSCD due to Genetic Defects of Limbal/Corneal Epithelial Cells
  • 5.2 LSCD due to Chemical and Mechanical Injury of Limbal/Corneal Epithelial Cells
  • 5.3 Animal Models for Corneal Wound Healing
  • 6. CLINICAL OUTCOME OF CELL-BASED OCULAR SURFACE RECONSTRUCTIVE PROCEDURE
  • 6.1 Overview
  • 6.2 Surgical Techniques
  • 6.2.1 Cultivated limbal epithelial transplantation
  • 6.2.1.1 Surgical steps in CLET
  • 6.2.1.2 Results of CLET
  • 6.2.2 Simple limbal epithelial transplantation
  • 6.2.2.1 Surgical technique in SLET
  • 6.2.2.2 Results of SLET
  • 6.2.3 Cultivated oral mucosal epithelial transplantation
  • 6.2.3.1 Surgical technique in COMET
  • 6.2.3.2 Results of COMET
  • 7. FUTURE PATH AND CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Three - Eukaryotic Ribosome Assembly and Nuclear Export
  • 1. INTRODUCTION
  • 1.1 Experimental Approaches to Understanding Ribosome Biogenesis
  • 2. ASSEMBLY OF 90S PRERIBOSOME, EARLIEST RIBOSOMAL PRECURSOR
  • 3. NUCLEAR MATURATION OF PRERIBOSOMAL PARTICLES
  • 3.1 Nuclear Maturation of Pre-60S Subunits
  • 3.2 Nuclear Maturation of Pre-40S Subunits
  • 4. EXPORT OF PRERIBOSOMAL SUBUNITS
  • 4.1 Shared Export Factors
  • 4.2 Nuclear Export of Pre-60S Subunits
  • 4.3 Nuclear Export of Pre-40S Subunits
  • 5. CYTOPLASMIC MATURATION OF PRERIBOSOMAL PARTICLES
  • 5.1 Cytoplasmic Maturation of Pre-60S Subunits
  • 5.2 Cytoplasmic Maturation of Pre-40S Subunits
  • 6. CONCLUDING REMARKS
  • REFERENCES
  • Four - Transmembrane 4 L Six Family Member 5 (TM4SF5)-Mediated Epithelial-Mesenchymal Transition in Liver Diseases
  • 1. INTRODUCTION
  • 2. TM4SF5 AS COMPONENT OF TETRASPANIN-ENRICHED MICRODOMAINS
  • 3. TM4SF5-MEDIATED EPITHELIAL-MESENCHYMAL TRANSITION
  • 3.1 TM4SF5-Mediated Development of Muscle Cells in Zebrafish
  • 3.2 TM4SF5-Mediated Liver Fibrosis
  • 3.2.1 Regulation of TM4SF5 expression by TGFß1 signaling
  • 3.2.2 Cross-talk between tetraspanins
  • 4. TM4SF5-MEDIATED METASTATIC POTENTIAL
  • 4.1 TM4SF5-Mediated FAK Activation for Direct Migration
  • 4.2 TM4SF5-Mediated c-Src Regulation of Invasion
  • 5. TM4SF5-DEPENDENT DRUG RESISTANCE
  • 6. TM4SF5-DEPENDENT SELF-RENEWAL CAPACITY
  • 7. CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Five - Emerging Roles of JmjC Domain-Containing Proteins
  • 1. INTRODUCTION
  • 2. HISTONE MODIFICATION AND METHYLATION
  • 3. HISTONE DEMETHYLATION AND DEMETHYLASES
  • 3.1 Peptidylarginine Deiminase 4 (PADI4/PAD4) and Amine Oxidase (LSD1/KDM1)
  • 3.2 Jumonji C Domain-Bearing Histone Demethylases
  • 3.2.1 Jumonji histone demethylase subgroups
  • 3.2.1.1 KDM2: Jumonji histone demethylase 1(JHDM1) subgroup
  • 3.2.1.1.1 KDM2A/KDM2B
  • 3.2.1.1.2 Jhd1
  • 3.2.1.1.3 Epe1
  • 3.2.1.2 KDM3: JHDM2 (JMJD1) subgroup
  • 3.2.1.2.1 KDM3A
  • 3.2.1.2.2 KDM3B
  • 3.2.1.2.3 KDM3C
  • 3.2.1.3 KDM4: JHDM3/JMJD2 subgroup
  • 3.2.1.3.1 KDM4A (JMJD2A)
  • 3.2.1.3.2 KDM4B (JMJD2B)
  • 3.2.1.3.3 KDM4C (JMJD2C/GASC1)
  • 3.2.1.3.4 Yeast KDM4 members
  • 3.2.1.4 KDM5: JARID subgroup
  • 3.2.1.4.1 KDM5A (JARID1A/RBP2) and Lid
  • 3.2.1.4.2 KDM5B (JARID1B/PLU-1)
  • 3.2.1.4.3 KDM5C (JARID1C/SMCX) and KDM5D (JARID1D/SMCY)
  • 3.2.1.4.4 JARID2-Jumonji
  • 3.2.1.5 KDM6: UTX/UTY/JMJD3 subgroup
  • 3.2.1.5.1 KDM6A (UTX)
  • 3.2.1.5.2 KDM6B (JMJD3)
  • 3.2.1.6 KDM7: PHF2/PHF8/KIAA1718 subgroup
  • 3.2.1.6.1 KDM7B (PHF8)
  • 3.2.1.6.2 KDM7A (KIAA1718)
  • 3.2.1.7 JmjC-domain-only
  • 3.2.1.7.1 JMJD6, is it the first true arginine demethylase?
  • 3.2.1.7.2 KDM8
  • 4. PLANT JMJC HISTONE DEMETHYLATION
  • 4.1 Roles of Nondemethylating JmjC Domain-Containing Proteins
  • 4.2 Plant JmjC Histone Demethylases
  • 5. CONCLUSIONS
  • REFERENCES
  • Six - New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes
  • 1. INTRODUCTION
  • 2. BACKGROUND
  • 2.1 Source of ROS
  • 2.2 Antioxidant Systems
  • 2.3 ROS Signaling
  • 2.3.1 ROS as signaling molecules
  • 2.3.2 Mechanism of ROS signaling
  • 3. TARGETS OF REDOX REGULATION
  • 3.1 Protein Tyrosine Phosphatases
  • 3.2 Receptor Tyrosine Kinases
  • 3.2.1 Platelet-derived growth factor receptor
  • 3.2.2 Epidermal growth factor receptor
  • 3.2.3 Vascular endothelial growth factor receptor
  • 3.2.4 Insulin receptor kinase
  • 3.2.5 Fibroblast growth factor receptor
  • 3.3 Nonreceptor Kinases
  • 3.3.1 Akt
  • 3.3.2 cAMP-dependent protein kinase
  • 3.3.3 Src family kinases
  • 3.3.4 MAPK
  • 3.3.5 ATM protein kinase
  • 3.3.6 Inhibitory ?B kinase (I?B)
  • 3.3.7 Ca2+/calmodulin-dependent protein kinase II (CaMKII)
  • 3.3.8 cGMP-dependent protein kinase
  • 4. OTHERS
  • 4.1 Forkhead BoxO Transcription Factors
  • 4.2 Nuclear Factor-Like 2 (Nrf2)
  • 5. PATHOPHYSIOLOGICAL SIGNIFICANCE
  • 5.1 Atherosclerosis
  • 5.2 Inflammation
  • 5.3 Neuroinflammation and Neurodegenerative Diseases
  • 5.4 Type 2 Diabetes
  • 5.5 Hypertension
  • 5.6 Preeclampsia
  • 5.7 Obesity
  • 5.8 Aging
  • 5.9 Cancer
  • 6. TREATMENT STRATEGIES INVOLVING ROS MODULATION
  • 7. MEASUREMENT OF ROS
  • 8. CONCLUSIONS AND FUTURE PERSPECTIVES
  • REFERENCES
  • Seven - Regeneration, Stem Cells, and Aging in the Tunicate Ciona: Insights from the Oral Siphon
  • 1. INTRODUCTION
  • 2. BACKGROUND
  • 2.1 Life Cycle, Adult Organization, and Growth
  • 2.2 Partial Body Regeneration
  • 2.3 OS Model
  • 3. OS REGENERATION
  • 3.1 Siphon Tip and Tube Regeneration
  • 3.1.1 OPO replacement
  • 3.1.2 Short-distance regeneration
  • 3.1.3 Long-distance regeneration
  • 3.2 Siphon Base Regeneration
  • 4. ADULT STEM CELLS
  • 4.1 Multiple Stem Cells
  • 4.2 Branchial Sac Stem Cells
  • 5. STEM AND PROGENITOR CELL MOBILIZATION AND DEPLOYMENT
  • 6. AGING AND OS REGENERATION
  • 7. CONCLUDING REMARKS AND PERSPECTIVES
  • ACKNOWLEDGMENTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Backcover

2. 2D Cell Culture


In many experimental setups, the creation of a functional host cell surface is sufficient to study initial interactions with bacterial pathogens such as adherence, invasion, and induction of signal transduction processes. For decades of years 2D cell monolayers grown on solid, impermeable plastic or glass surfaces have been applied as simple and cost-effective strategy to analyze principle mechanisms of bacterial-host cell interactions. Numerous in vitro cell culture systems have been confirmed as suitable to provide information about specific bacterial virulence factors involved and also elucidated the induction of many fold intracellular processes, such as signaling cascades and cytoskeletal rearrangements on the host side (Table 1). Depending on the physiological niche of the bacteria, pulmonary cells are cultivated and infected with typical lung pathogens like Legionella pneumophila and Streptococcus pneumoniae; gastrointestinal cells are used for infection studies with Helicobacter and Salmonella, and skin fibroblasts are chosen for infection with causative agents of wound infections like staphylococci-just giving a few examples. These studies generated impressive transmission electron microscopic pictures and opened up the field for more detailed cell culture infection analyses. Several immunofluorescence staining procedures have been developed, which can be applied after infection of eukaryotic cell monolayers with pathogenic bacteria. These procedures enable a microscopic visualization and also a differential quantification of adhered and internalized bacteria (Bergmann et al., 2009, 2013; Elm et al., 2004; Jensch et al., 2010; Lüttge et al., 2012; Agarwal et al., 2013, 2014; Pracht et al., 2005Amelung et al., 2011; Nerlich et al., 2009; Rohde and Chhatwal, 2013). In addition, fluorescence staining of the actin cytoskeleton also visualized radical morphological changes of the eukaryotic cells, e.g., induced by streptococcal adherence (Bergmann et al., 2009). Complex responses of host immune systems are also studied using suspension cultures with prepared and differentiated macrophages or other cells derived from the lymphoid tissues.

Table 1

Representative examples of bacterial pathogens analyzed in different cell culture models as highlighted in this review

Single cell type monolayer Macrophages Helicobacter pylori Wang et al., 2009 Macrophages, Dictyostelium discoideum Legionella pneumophila Steinert et al. (1994), Allombert et al. (2014), Steinert et al. (2000), Shevchuk and Steinert (2009), and Skriwan et al. (2002) D. discoideum Mycobacterium marinum Meng et al. (2014) Dendritic cells Streptococcus pneumoniae Rosendahl et al. (2013) Epithelial and endothelial cells S. pneumoniae Steinford et al. (1989), Jensch et al. (2010), Bergmann et al. (2009, 2013), Lüttge et al. (2012), Agarwal et al. (2013, 2014), Pracht et al. (2005), and Elm et al. (2004) Endothelial cells Streptococcus pyogenes Amelung et al. (2011) and Nerlich et al. (2009) 2D coculture model Bilayer model (epithelium and endothelium) Neisseria meningitides Birkness et al. (1995) Blood-brain barrier model Escherichia coli Huang et al. (1995, 2000) and Kim (2000) Streptococcus agalactiae Nizet et al. (1997) Listeria monocytogenes Greiffenberg et al. (1998) Citrobacter feundii Badger et al. (1999) S. pneumoniae Ring et al. (1998) and Untucht et al. (2011) Blood-cerebrospinal fluid model N. meningitides Steinmann et al. (2013) Lung coculture model Pseudomonas aeruginosa, Klebsiella pneumoniae, E. coli Hurley et al. (2004) 3D culture model with scaffolds Transwell system with ECM Chlamydia trachomatis Igietseme et al. (1994), Kane and Byrne (1998), Kane et al. (1999), and Dessus-Babus et al. (2002) L. pneumophila Skriwan et al. (2002) L. monocytogenes Cossart and Lecuit (1998) Neisseria gonoorhoeae Hopper et al. (2000) S. pyogenes Ochel et al. (2014) Table Continued Epithelial airway tissue model S. pneumoniae Fliegauf et al. (2013) P. aeruginosa Woodworth et al. (2008) Rotary wall vessel culture A549 lung epithelial cells Francisella tularensis David et al. (2014) P. aeruginosa Carterson et al. (2005) Cells on collagen-coated microcarrier beads C. trachomatis Guseva et al. (2007) Human intestinal Int-407 cells Salmonella enterica Nickerson et al. (2001) Organoids Human ileocecal colorectal adenocarcinoma HCT-8 E. coli (EHEC/EPEC) Carvalho et al. (2005) Human skin equivalent Acinetobacter baumannii de Breij et al. (2010) and Breij et al. (2014) Tissue explants Lung tissue explants Chlamydia pneumophila Rupp et al. (2004) L. pneumophila Jäger et al. (2014) and Shevchuk et al. (2014) S. pneumoniae Szymanski et al. (2012) Tonsil explants S. pyogenes Bell et al. (2012) and Abbot et al. (2007) Microfluidic perfusion HUVEC Staphylococcus aureus Pappelbaum et al. (2013) This chapter will provide an overview about the broad spectrum of 2D cell culture models in infection biology. Beginning with the discussion of key aspects in using immortalized versus primary nonimmortalized eukaryotic monolayers in infection models, the second part is focused on protozoa-based models in infection biology. Climbing to the next level of cell culture complexity, the advantages of coculture models generated by simultaneous cultivation of two or more different cell types will be described. The cocultivation technique is used to regenerate tissue barriers and will be demonstrated by the examples of a transwell-based reconstruction of a blood-brain barrier (BBB) and a blood-cerebrospinal fluid barrier (BCSFB).

2.1. Culture of Immortalized Cell Lines versus Primary Cell Culture


Many valuable bacterial pathogenicity mechanisms have been elucidated using 2D monolayer cell cultures indicating that certain scientific questions can be answered and sometimes even require this kind of simplified cell culture technique. A risk of using 2D monolayer cell culture models is the loss or diminished expression of certain phenotypic characteristics that may mediate bacterial-host cell interactions. This loss of phenotype results in progressive alterations in biochemistry, function, and morphology and increases with every passage of the culture as the cells diverge from the source tissue phenotype (Shaw, 1996). Of special importance are immortalized human cell lines, which have been used extensively for the study of host-pathogen interactions. These stable cell lines combine the advantage of an indefinite life span allowing passaging of several hundred times with low or moderate culture requirements. However, these lines exhibit aberrant properties attributable to immortalization and artificial 2D growth conditions (Freshney, 2005). Thus, several studies targeting the investigation of pathogen-cell interactions have been conducted with primary cells derived from different animals such as primary porcine endothelial and epithelial cells (Vanier et al., 2007;...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

203,49 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok