Chitosan Based Biomaterials Volume 1

Fundamentals
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 26. September 2016
  • |
  • 342 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100257-5 (ISBN)
 

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials.


  • Contains specific focus on the techniques and technologies needed to develop chitosan for biomedical applications
  • Presents a comprehensive treatment of the fundamentals
  • Provides contributions from leading researchers with extensive experience in chitosan
  • Englisch
  • Cambridge
Elsevier Science
  • 5,07 MB
978-0-08-100257-5 (9780081002575)
0081002572 (0081002572)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Chitosan Based Biomaterials, Volume 1
  • Related titles
  • Chitosan Based Biomaterials: Volume 1: Fundamentals
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Biomaterials
  • One - Fundamentals of chitosan for biomedical applications
  • 1 - Fundamentals of chitosan for biomedical applications
  • 1.1 Introduction
  • 1.1.1 Production/processing of chitin and chitosan
  • 1.2 Chemical and biological properties of chitosans
  • 1.2.1 Chemical properties
  • 1.2.2 Biological properties
  • 1.3 Modification of chitosans
  • 1.3.1 Chemical modifications of chitosan
  • 1.3.1.1 Blending or chemical linkages of chitosan with synthetic biopolymers
  • 1.3.1.2 Chemical grafting of chitosan
  • 1.3.1.3 Enzymatic grafting of chitosan
  • 1.4 Some chitosan derivatives
  • 1.4.1 O- and N-carboxymethylchitosan
  • 1.4.2 Quaternized chitosan
  • 1.4.3 Sugar-modified chitosan
  • 1.4.4 Alkyl chitosans
  • 1.4.5 Carbohydrate-branched chitosan
  • 1.4.6 Polyethylene-grafted chitosans
  • 1.4.7 Cyclodextrin-linked chitosans
  • 1.5 Biomedical applications of chitosan and chitosan derivatives
  • 1.5.1 Chitosan and its derivatives in drug delivery applications
  • 1.5.2 Chitosan and its derivatives in tissue engineering applications
  • 1.5.3 Chitosan and its derivatives in enzyme immobilizations for biosensing
  • 1.6 Conclusion and perspectives
  • References
  • 2 - Antibacterial properties of chitosan
  • 2.1 Introduction
  • 2.2 Antibacterial activity
  • 2.2.1 Antibacterial mechanisms of chitosan
  • 2.3 Chitosan derivatives and their bactericidal activity
  • 2.3.1 Graft polymerization of chitosan
  • 2.3.2 Quarternization of chitosan
  • 2.3.3 Carboxylated chitosan derivatives
  • 2.3.4 Chitosan derivatives with sulfonyl groups
  • 2.3.5 Chitosan hydrogels
  • 2.3.6 Chitosan films
  • 2.3.7 Chitosan nanoparticles
  • 2.4 Concluding remarks
  • References
  • 3 - Immunological responses to chitosan for biomedical applications
  • 3.1 Introduction
  • 3.2 Whole blood responses to chitosan
  • 3.3 Polymorphonuclear leukocyte responses to chitosan
  • 3.4 Macrophage responses to chitosan
  • 3.5 Studies of innate and cell-mediated immune response
  • 3.6 Effect of macrophage polarization
  • 3.7 Influencing macrophage activation
  • 3.8 Adaptive immune responses to chitosan
  • 3.9 Methods to assay chitosan responses in vitro using human macrophage-like cell cultures
  • 3.9.1 Materials
  • 3.9.2 Prepare frozen aliquots of specific reagents
  • 3.9.3 Prepare cell culture medium
  • 3.9.4 Differentiate THP-1 cells to macrophages in 100nM PMA
  • 3.9.5 Differentiate U937 cells to macrophages in 100nM PMA
  • 3.9.6 Combine chitosan material with differentiated macrophage cells
  • 3.9.7 Endpoint analyses
  • 3.10 Conclusions and future trends
  • List of abbreviations
  • Acknowledgments
  • References
  • 4 - Characterization of chitosan matters
  • 4.1 Introduction
  • 4.2 Physical properties
  • 4.3 Cellular interactions
  • 4.4 In vivo studies using chitosan in bone implant and tissue engineering applications
  • 4.5 Characterization methods
  • 4.5.1 Procedure to determine ash content of chitosan materials
  • 4.5.2 Procedure to determine residual protein content of chitosan materials
  • 4.5.3 Procedure to determine endotoxin in chitosan materials
  • 4.6 Conclusion
  • References
  • Two - Chemical and physical modification of chitosan-based biomaterials
  • 5 - Deacetylation modification techniques of chitin and chitosan
  • 5.1 Introduction
  • 5.2 Deacetylation methods
  • 5.2.1 Alkali treatment method
  • 5.2.1.1 Experimental procedure
  • 5.2.2 Alkali treatment using microwave technique
  • 5.2.2.1 Experimental procedure
  • 5.2.3 Enzymatic deacetylation
  • 5.2.4 Steam explosion method
  • 5.3 Methods for determination of degree of deacetylation
  • 5.3.1 Fourier transform infrared spectroscopy (FTIR)
  • 5.3.2 1H-NMR spectroscopy
  • 5.3.3 UV spectrophotometric analysis
  • 5.3.4 Potentiometric titration
  • 5.3.5 Acid-base titration
  • 5.3.5.1 Experimental procedure
  • 5.3.6 Elemental analysis
  • 5.3.7 Capillary zone electrophoresis method
  • 5.3.8 Raman spectroscopy
  • 5.4 Conclusions
  • Acknowledgment
  • References
  • 6 - Modifying the molecular weight of chitosan
  • 6.1 Introduction
  • 6.2 Merits of chitosan molecular weight modification
  • 6.3 Methods of degradation of the molecular weight of chitosan
  • 6.4 Mechanical degradation methods for modifying molecular weight
  • 6.4.1 Shearing method
  • 6.4.2 Ultrasonication method
  • 6.4.3 Microfluidization method
  • 6.5 Factors affecting degradation rate
  • 6.5.1 Solution concentration
  • 6.5.2 Reaction temperature
  • 6.5.3 Type of solvent
  • 6.5.4 Reaction time
  • 6.5.5 Effect of the degree of deacetylation of chitosan used on degradation rate
  • 6.6 Methods for increasing degradation rate
  • 6.6.1 Use of concurrent ultrafiltration treatment
  • 6.6.2 Use of the highest concentration solution
  • 6.6.3 Two-stage microfluidization combined with ultrafiltration treatment
  • 6.6.4 Combining shearing/ultrafiltration treatment at 50°C and ultrasonic or microfluidization/ultrafiltration treatment at 30°C...
  • 6.7 Fractionation
  • 6.7.1 Regeneration (precipitation)
  • 6.7.2 Supercritical carbon dioxide
  • 6.8 Summary
  • References
  • 7 - Controlling chitosan degradation properties in vitro and in vivo
  • 7.1 Background
  • 7.2 Host response to degradable chitosan biomaterials
  • 7.2.1 Hydrolysis (nonenzymatic)
  • 7.2.2 Enzymatic degradation
  • 7.2.3 Oxidative degradation
  • 7.3 Effects of chitosan properties on degradation
  • 7.3.1 Size and shape of implant
  • 7.3.2 Degree of deacetylation
  • 7.3.3 Molecular weight
  • 7.3.4 Weight percent and blends
  • 7.3.5 Neutralization and cross-linking
  • 7.4 Processing methods to reduce molecular weight
  • 7.4.1 Enzymatic
  • 7.4.2 Oxidative
  • 7.4.3 High energy
  • 7.4.4 Composites and postfabrication treatments
  • 7.5 Experimental methods section
  • 7.5.1 Enzymatic degradation
  • 7.5.2 Oxidative degradation
  • 7.5.3 Determination of molecular weight of polymer chains after degradation
  • 7.5.4 Measuring degradation rate in vivo
  • 7.6 Conclusions
  • Acknowledgment
  • References
  • Three - Production techniques for chitosan-based biomaterials
  • 8 - Production of micro- and nanoscale chitosan particles for biomedical applications
  • 8.1 Introduction
  • 8.2 Chitosan micro- and nanoparticle preparation methods
  • 8.2.1 Emulsification and covalent cross-linking
  • 8.2.2 Emulsification and ionic cross-linking
  • 8.2.3 Emulsification and solvent evaporation
  • 8.2.4 Emulsion-droplet coalescence
  • 8.2.5 Ionic gelation
  • 8.2.6 Polyelectrolyte complexes
  • 8.2.7 Precipitation method
  • 8.2.8 Spray drying method
  • 8.2.9 Electrospray ionization
  • 8.2.10 Chemical modification
  • 8.3 Conclusions
  • Acknowledgment
  • References
  • 9 - Production of electrospun chitosan for biomedical applications
  • 9.1 Introduction
  • 9.2 Challenges and success in electrospinning of chitosan
  • 9.2.1 Electrospinning working principle
  • 9.2.2 Solution and rheological properties of chitosan
  • 9.2.3 Electrospinning of pure chitosan
  • 9.2.4 Electrospinning of chitosan with other polymers
  • 9.2.5 Selection of solvents
  • 9.2.6 Selection of chitosan salts
  • 9.3 Production of electrospun nanofiber from chitin to chitosan
  • 9.4 Fiber collections: random and aligned fibers
  • 9.5 Physical-chemical properties of nanofibers
  • 9.5.1 Strength of nanofibers
  • 9.5.2 Cross-linking techniques
  • 9.5.3 Microbial characteristics
  • 9.6 Biomedical application of chitosan fibers
  • 9.6.1 Tissue engineering
  • 9.6.2 Drug delivery
  • 9.6.3 Wound dressing
  • 9.6.4 Implant coatings
  • 9.7 Fabrication method
  • 9.7.1 Materials
  • 9.7.1.1 Polymers and solvent
  • 9.7.1.2 Fabrication
  • 9.7.2 Methods
  • 9.7.2.1 Solution preparation of PCL and chitosan
  • 9.7.2.2 Preparation of 80/20 (PCL/LMW-CS) solutions
  • 9.7.2.3 Electrospinning of polyblended PCL/LMW-CS solutions
  • 9.8 Conclusion
  • References
  • 10 - Lyophilized chitosan sponges
  • 10.1 Background
  • 10.2 Drug delivery
  • 10.3 Tissue engineering
  • 10.4 Basics of lyophilization
  • 10.5 Experimental methods section
  • 10.5.1 Fabricating lyophilized sponges
  • 10.5.1.1 Chitosan solution preparation
  • 10.5.1.2 Lyophilization
  • 10.5.1.3 Optional neutralization and secondary lyophilization
  • 10.5.1.4 Post-processing steps
  • 10.6 Conclusions
  • References
  • 11 - Production of chitosan coatings on metal and ceramic biomaterials
  • 11.1 Introduction
  • 11.2 Important chitosan properties for the generation of surface coatings
  • 11.3 Methods to improve chitosan coating adhesion
  • 11.3.1 Surface functionalization of substrates by silane-based treatment
  • 11.3.2 Conversion coatings
  • 11.3.3 Dielectric barrier discharge plasma
  • 11.4 Methods of chitosan coatings on metals
  • 11.4.1 Passive coating methods
  • 11.4.1.1 Freeze-drying
  • 11.4.1.2 Impregnation
  • 11.4.1.3 Spread casting
  • 11.4.1.4 Drop casting
  • 11.4.1.5 Spin coating
  • 11.4.1.6 Electrospinning
  • Reagents
  • Materials and equipment
  • Solution preparation
  • Electrospinning procedure
  • 11.4.1.7 Electrospray deposition
  • 11.4.2 Electrostatic methods
  • 11.4.2.1 Layer-by-layer
  • Reactants
  • Concentrations of solutions needed to assemble polysaccharide layers
  • Procedure
  • 11.4.2.2 Electrolytic deposition
  • 11.4.2.3 Electrophoretic deposition
  • 11.5 Methods of chitosan coatings on ceramics
  • 11.5.1 Passive coating methods
  • 11.5.1.1 Freeze-drying
  • 11.5.1.2 Dip coating
  • 11.5.1.3 Gelcasting
  • 11.5.2 Chitosan-based coatings formed by chemical bonding methods
  • 11.5.2.1 Emulsification-evaporation method
  • 11.5.2.2 Phase inversion
  • 11.6 Methods of chitosan coatings on polymers
  • 11.6.1 Dip coating
  • 11.6.2 Electron beam sputter deposition
  • 11.7 Conclusions
  • Nomenclature
  • References
  • 12 - Production of chitosan-based hydrogels for biomedical applications
  • 12.1 Introduction
  • 12.2 Production of chitosan-based hydrogels
  • 12.2.1 Ionic complexes
  • 12.2.2 Polyelectrolyte complexes
  • 12.2.3 Chemical cross-linking
  • 12.2.4 Interpenetrating networks
  • 12.3 Smart hydrogels
  • 12.3.1 Temperature-sensitive hydrogels
  • 12.3.2 pH-sensitive hydrogels
  • 12.3.3 Electroresponsive hydrogels
  • 12.3.4 Magnetoresponsive hydrogels
  • 12.3.5 Nanogels
  • 12.4 Biomedical applications
  • 12.4.1 Drug delivery
  • 12.4.2 Injectable hydrogels
  • 12.4.3 Bone tissue engineering
  • 12.4.4 Biosensors and imaging
  • 12.4.5 Self-healing adhesives
  • 12.4.6 Ophthalmology
  • 12.5 Methods
  • 12.5.1 Preparation of chitosan blend IPN hydrogels
  • 12.6 Conclusions
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

226,10 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok