Functionalized Graphene Nanocomposites and Their Derivatives

Synthesis, Processing and Applications
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. November 2018
  • |
  • 368 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-814553-1 (ISBN)
 

Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications explains how the functionalization technique is used to create graphene nanocomposites, also exploring its current uses in industrial applications. Graphene-based nanocomposites are one of the major advancements in polymer-based materials, thus the synthesis, nanoscale dimensions, high aspect ratio, mechanical, electrical and thermal properties of graphene and its derivative have all been major areas of research in the last decade. This important reference covers these updates and is a critical book for those working in the fields of materials processing and characterization.

  • Explains how graphene is functionalized and used in the fabrication of nanocomposites for a range of applications
  • Explores why the properties of functionalized graphene make it such a useful, versatile material
  • Describes, in detail, the functionalization process for utilization in graphene
  • Englisch
  • San Diego
  • |
  • USA
  • 9,41 MB
978-0-12-814553-1 (9780128145531)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Functionalized Graphene Nanocomposites and Their Derivatives
  • Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications
  • Copyright
  • Dedication
  • Contents
  • List of Contributors
  • About the Editors
  • Preface
  • 1 - CHEMICAL PREPARATION AND FUNCTIONALIZATION TECHNIQUES OF GRAPHENE AND GRAPHENE OXIDE
  • 1. INTRODUCTION
  • 2. SYNTHESIS OF GRAPHENE AND GRAPHENE OXIDE
  • 2.1 BOTTOM-UP GRAPHENE
  • 2.1.1 Chemical Vapor Deposition
  • 2.1.2 Epitaxial Growth
  • 2.1.3 Total Organic Synthesis
  • 2.2 TOP-DOWN GRAPHENE
  • 2.2.1 Mechanical Cleavage
  • 2.2.2 Chemical Method
  • 2.2.2.1 Chemical Reagent Reduction
  • 2.2.2.2 Solvothermal/Hydrothermal Reduction
  • 2.2.2.3 Thermal Annealing
  • 2.2.3 Electrolytic Exfoliation
  • 3. FUNCTIONALIZATION TECHNIQUES OF GRAPHENE AND GRAPHENE OXIDE
  • 3.1 COVALENT MODIFICATION
  • 3.1.1 Nucleophilic Substitution Reaction
  • 3.1.2 Electrophilic Substitution Reaction
  • 3.1.3 Condensation Reaction
  • 3.2 NONCOVALENT MODIFICATION
  • 3.2.1 Van der Waals Force
  • 3.2.2 Electrostatic Interaction
  • 3.2.3 Hydrogen Bonding
  • 3.2.4 Coordination Bonds
  • 3.2.5 p-p Interaction
  • 4. CONCLUSION
  • REFERENCES
  • 2 - SURFACE FUNCTIONALIZATION OF GRAPHENE-BASED NANOCOMPOSITES BY CHEMICAL REACTION
  • 1. INTRODUCTION
  • 2. METHODS FOR PRODUCTION FUNCTIONALIZED GRAPHENE BY ELECTROPHILIC REACTIONS/POLYMER NANOCOMPOSITE
  • 2.1 FUNCTIONALIZED GRAPHENE BY ELECTROPHILIC REACTIONS
  • 2.2 NANOCOMPOSITES BASED ON FUNCTIONALIZED GRAPHENE BY ELECTROPHILIC REACTIONS AND POLYMERIC MATRICES
  • 3. APPLICATIONS OF FUNCTIONALIZED GRAPHENE-BASED POLYMER MATRICES
  • 3.1 ACRYLONITRILE BUTADIENE STYRENE
  • 3.2 POLYAMIDES
  • 3.3 POLY(VINYLIDENE FLUORIDE)
  • 3.4 POLYPROPYLENE/POLYETHYLENE
  • 4. CONCLUSION
  • REFERENCES
  • 3 - FUNCTIONALIZED GRAPHENE AND THERMOSET MATRICES-BASED NANOCOMPOSITES: MECHANICAL AND THERMAL PROPERTIES
  • 1. INTRODUCTION
  • 2. SYNTHESIS METHODS OF GRAPHENE
  • 3. GRAPHENE PROPERTIES
  • 3.1 PROBLEMATIC
  • 4. FUCTIONALIZED GRAPHENE NANOCOMPOSITES PREPARATION
  • 4.1 SURFACE MODIFICATION OF GRAPHENE
  • 4.2 THERMOSET GRAPHENE NANOCOMPOSITES PREPARATION
  • 5. NANOCOMPOSITE PROPERTIES
  • 5.1 THERMAL PROPERTIES
  • 5.2 MECHANICAL PROPERTIES
  • 5.2.1 Tensile Properties
  • 5.3 TORSIONAL PROPERTIES
  • 6. CONCLUSION
  • REFERENCES
  • 4 - FUNCTIONALIZED GRAPHENE NANOCOMPOSITES IN AIR FILTRATION APPLICATIONS
  • 1. OVERVIEW AND BACKGROUND
  • 2. SYNTHESIS OF GRAPHENE
  • 3. PROPERTIES
  • 3.1 CHEMICAL PROPERTIES
  • 3.2 PHYSICAL PROPERTIES
  • 4. FUNCTIONALIZATION AND COMPOSITE PREPARATION
  • 4.1 POROUS GRAPHENE
  • 4.2 DOPED GRAPHENE
  • 4.3 POLYMERIZATION
  • 4.4 COMPOSITES
  • 5. AIR FILTRATION BY FUNCTIONALIZED GRAPHENE
  • 6. SUMMARY AND PERSPECTIVE
  • REFERENCES
  • 5 - FUNCTIONALIZED GRAPHENE NANOCOMPOSITES FOR WATER TREATMENT
  • 1. INTRODUCTION
  • 2. CHEMICAL FUNCTIONALIZATION OF GRAPHENE
  • 2.1 COVALENT FUNCTIONALIZATION
  • 2.1.1 Covalent Attachment of Organic Functionalities to Pristine Graphene
  • 2.1.2 Covalent Addition of Free Radicals to sp2 Carbon of Graphene
  • 2.1.3 Covalent Addition of Dienophiles to Carbon-Carbon Bonds of Graphene
  • 2.1.4 Graphene Oxide and Its Covalently Attached Functionalities
  • 2.1.5 Addition of Chromophores to Graphene
  • 2.1.6 Linkage of Polymers Covalently With Graphene Oxide
  • 2.2 NONCOVALENT FUNCTIONALIZATION OF GRAPHENE
  • 2.2.1 p-p Stacking
  • 2.2.2 Surfactant/Ion-Assisted Hydrophilic/-Phobic Interaction
  • 3. APPLICATIONS OF FUNCTIONALIZED GRAPHENE-BASED COMPOSITES
  • 3.1 DECONTAMINATION OF WATER THROUGH PHYSICAL/CHEMICAL ADSORPTION
  • 3.2 DETECTION OF HEAVY METAL IONS USING GRAPHENE-BASED SENSORS
  • 3.3 PHOTOCATALYSTIC DEGRADATION OF ENVIRONMENTAL POLLUTANTS
  • REFERENCES
  • 6 - RHEOLOGICAL PROPERTIES OF FUNCTIONALIZED GRAPHENE AND POLYMERIC MATRICES-BASED NANOCOMPOSITES
  • 1. INTRODUCTION
  • 2. NANOCOMPOSITES-BASED GRAPHENE AND POLYMERIC MATRIX
  • 3. PROCESSING TECHNIQUES OF GRAPHENE-BASED NANOCOMPOSITES
  • 4. FUNCTIONALIZATION OF GRAPHENE
  • 4.1 NONCOVALENT FUNCTIONALIZATION
  • 4.2 COVALENT FUNCTIONALIZATION OF GRAPHENE
  • 4.2.1 Functionalization of Graphene Oxide
  • 5. NANOCOMPOSITES CHARACTERIZATION
  • 5.1 FUNCTIONALIZED GRAPHENE OXIDE (SILANE) PREPARATION
  • 5.2 NANOCOMPOSITES MANUFACTURING
  • 5.3 MECHANICAL PROPERTIES
  • 5.4 RHEOLOGICAL PROPERTIES ON TORSIONAL MODE
  • 6. CONCLUSION
  • REFERENCES
  • FURTHER READING
  • 7 - FUNCTIONALIZED GRAPHENE-REINFORCED FOAMS BASED ON POLYMER MATRICES: PROCESSING AND APPLICATIONS
  • 1. INTRODUCTION
  • 2. PRODUCTION OF GRAPHENE
  • 3. APPLICATIONS OF GRAPHENE-BASED POLYMER FOAMS
  • 3.1 POLYURETHANE FOAMS
  • 3.2 SILICONE FOAMS
  • 3.3 POLYSTYRENE FOAMS
  • 3.4 POLY(METHYL METHACRYLATE) FOAMS
  • 3.5 POLY(VINYLIDENE FLUORIDE) FOAMS
  • 3.6 POLYIMIDE FOAMS
  • 3.7 OTHER FOAMS
  • 4. DISCUSSION AND CONCLUSIONS
  • REFERENCES
  • 8 - FUNCTIONALIZED GRAPHENE AEROGEL: STRUCTURAL AND MORPHOLOGICAL PROPERTIES AND APPLICATIONS
  • 1. INTRODUCTIONS
  • 2. MORPHOLOGICAL STUDY
  • 3. APPLICATION
  • 4. PROPERTIES
  • 5. GRAPHENE AEROGELS IN ENERGY STORAGE APPLICATIONS
  • 6. GRAPHENE AEROGELS IN GAS SENSING APPLICATIONS
  • REFERENCES
  • 9 - COMPARISON BETWEEN FUNCTIONALIZED GRAPHENE AND CARBON NANOTUBES: EFFECT OF MORPHOLOGY AND SURFACE GROUP ON MECH ...
  • 1. INTRODUCTION TO GRAPHENE AND CARBON NANOTUBE NANOCOMPOSITES
  • 2. FUNDAMENTAL ASPECTS ON MORPHOLOGY AND SURFACE GROUP OF GRAPHENE AND CARBON NANOTUBE NANOCOMPOSITES
  • 3. EFFECT OF MORPHOLOGY AND SURFACE GROUP TO MECHANICAL PROPERTIES OF GRAPHENE AND CARBON NANOTUBE NANOCOMPOSITES
  • 3.1 INTRODUCTION
  • 3.2 TENSILE STRENGTH AND YOUNG'S MODULUS OF DIFFERENT CARBON NANOMATERIALS WITH POLYMER COMPOSITES
  • 3.2.1 Effect of Combinations of Different Carbon Nanomaterials With Polyvinyl Alcohol on Tensile Strength and Young's Modulus
  • 3.2.2 Effect of Combinations of Different Carbon Nanomaterials With Polyether Sulfone on Tensile Strength and Young's Modulus
  • 3.2.3 Effect of Combination Different Carbon Nanomaterials With HydroMedD640 on Tensile Strength and Young's Modulus
  • 3.2.4 Effect of Combinations of Different Carbon Nanomaterials With High-Density Polyethylene on Tensile Strength and Young's Modulus
  • 3.2.5 Effect of Combinations of Different Carbon Nanomaterials With Epoxy on Tensile Strength and Young's Modulus
  • 3.2.6 Effect of Combinations of Different Carbon Nanomaterials With Poly(ethylene-2,6-naphthalate) on Tensile Strength and Young' ...
  • 3.3 FRACTURE TOUGHNESS OF NANOCOMPOSITE MATERIALS
  • 4. EFFECT OF FILLER CONCENTRATION, FABRICATION, AND MODIFICATION ON ELECTRICAL PROPERTIES OF GRAPHENE AND CARBON NANOTUBE NANO ...
  • 4.1 THE ELECTRICAL CONDUCTIVITY MECHANISM
  • 4.2 EFFECT OF CONCENTRATION
  • 4.3 EFFECT OF FABRICATION
  • 4.4 EFFECT OF FILLER MODIFICATION
  • 5. EFFECT OF MORPHOLOGY AND SURFACE GROUP TO THERMAL PROPERTIES OF GRAPHENE AND CARBON NANOTUBE NANOCOMPOSITES
  • 5.1 THERMAL CONDUCTIVITY AND COEFFICIENT OF THERMAL EXPANSION ON GRAPHENE-BASED POLYMER NANOCOMPOSITES
  • 5.2 EFFECT OF THERMAL CONDUCTIVITY WITH FILLER CONTENTS OF GRAPHENE AND MULTIWALLED CARBON NANOTUBES
  • 5.3 EFFECT OF GRAPHENE PLATELETS AND CARBON NANOTUBES ON THE THERMAL PROPERTIES OF EPOXY COMPOSITES
  • 6. CONCLUSION AND FUTURE WORKS
  • REFERENCES
  • 10 - FUNCTIONALIZED GRAPHENE REINFORCED HYBRID NANOCOMPOSITES AND THEIR APPLICATIONS
  • 1. INTRODUCTION
  • 2. GRAPHENE AND ITS SYNTHESIS
  • 3. GRAPHENE PROPERTIES AND APPLICATIONS
  • 4. FUNCTIONALIZED GRAPHENE
  • 5. HYBRID NANOCOMPOSITES
  • 6. FUNCTIONALIZED GRAPHENE-REINFORCED HYBRID POLYMER NANOCOMPOSITES
  • 7. APPLICATIONS OF FUNCTIONALIZED GRAPHENE HYBRID NANOCOMPOSITES
  • 8. CONCLUSION
  • REFERENCES
  • 11 - FUNCTIONALIZED GRAPHENE-BASED NANOCOMPOSITES FOR ENERGY APPLICATIONS
  • 1. GRAPHENE: A BRIEF HISTORY OR INTRODUCTION
  • 2. GRAPHENE: A BRIEF HISTORY
  • 2.1 PROPERTIES AND CHARACTERISTICS
  • 3. GRAPHENE PREPARATION METHODS
  • 3.1 MECHANICAL EXFOLIATION
  • 3.2 CHEMICAL VAPOR DEPOSITION
  • 3.3 LIQUID-PHASE EXFOLIATION
  • 3.4 ELECTROCHEMICAL EXFOLIATION
  • 3.5 REDUCTION OF GRAPHENE OXIDE
  • 4. DEVELOPMENT OF GRAPHENE REINFORCED POLYMER COMPOSITES
  • 4.1 SOLUTION MIXING
  • 4.2 MELT BLENDING
  • 4.3 IN SITU POLYMERIZATION
  • 4.4 HIGH SHEAR MIXING-CALENDERING
  • 5. PROPERTIES OF GRAPHENE-BASED REINFORCED POLYMER COMPOSITES
  • 5.1 MECHANICAL PROPERTIES
  • 5.2 ELECTRICAL PROPERTIES
  • 6. GRAPHENE-BASED NANOCOMPOSITES FOR ENERGY APPLICATIONS
  • 6.1 ENERGY STORAGE
  • 7. CHARACTERIZATION OF GRAPHENE-REINFORCED COMPOSITES: MORPHOLOGICAL STUDIES
  • 8. CONCLUSION
  • REFERENCES
  • 12 - ELECTRONIC APPLICATIONS OF FUNCTIONALIZED GRAPHENE NANOCOMPOSITES
  • 1. INTRODUCTION
  • 2. GRAPHENE IN ELECTRONIC APPLICATIONS
  • 3. GRAPHENE NANOCOMPOSITES FOR MICROSENSING DEVICES
  • 4. GRAPHENE NANOCOMPOSITE-FILLED POLYMER FOR STRETCHABLE CONDUCTIVE INK
  • 5. GRAPHENE-FILLED POLYMERS IN SOLAR CELL APPLICATIONS
  • 5.1 PRINCIPLES OF GRAPHENE SOLAR CELLS
  • 6. GRAPHENE NANOCOMPOSITES FOR LITHIUM ION BATTERIES
  • 7. GRAPHENE NANOCOMPOSITES FOR SUPERCAPACITORS
  • 8. GRAPHENE NANOCOMPOSITES FOR ELECTROMAGNETIC INDUCTION
  • 9. GRAPHENE NANOCOMPOSITES FOR ELECTRONIC DISCHARGE
  • 10. CONCLUSION
  • REFERENCES
  • 13 - A CORELATION BETWEEN THE GRAPHENE SURFACE AREA, FUNCTIONAL GROUPS, DEFECTS, AND POROSITY ON THE PERFORMANCE OF ...
  • 1. INTRODUCTION
  • 2. EFFECT OF SPECIFIC SURFACE AREA ON GRAPHENE-BASED NANOCOMPOSITES
  • 2.1 BRUNAUER-EMMETT-TELLER ISOTHERM ON GRAPHENE
  • 2.2 ELECTRONIC MICROSCOPIC STUDIES OF GRAPHENE
  • 3. EFFECT OF DEFECTS ON GRAPHENE-BASED NANOCOMPOSITES
  • 3.1 RAMAN SPECTRA OF DEFECTS ON GRAPHENE
  • 3.2 THERMAL CONDUCTIVITY OF DEFECTS ON GRAPHENE-BASED NANOCOMPOSITES
  • 3.3 MECHANICAL PROPERTIES OF DEFECTS ON GRAPHENE-BASED NANOCOMPOSITES
  • 4. EFFECT OF FUNCTIONAL GROUPS ON GRAPHENE-BASED NANOCOMPOSITES
  • 4.1 FOURIER TRANSFORM INFRARED SPECTROSCOPY OF FUNCTIONAL GROUPS ON GRAPHENE-BASED NANOCOMPOSITE
  • 4.2 X-RAY PHOTOELECTRON SPECTROSCOPY OF FUNCTIONAL GROUPS IN GRAPHENE
  • 5. EFFECT OF POROSITY ON GRAPHENE-BASED NANOCOMPOSITES
  • 5.1 THERMAL PROPERTIES OF GRAPHENE-BASED NANOCOMPOSITES
  • 6. CONCLUSION
  • REFERENCES
  • 14 - METAL OXIDE-GRAPHENE AND METAL-GRAPHENE NANOCOMPOSITES FOR ENERGY AND ENVIRONMENT
  • 1. INTRODUCTION AND HISTORICAL DEVELOPMENTS
  • 1.1 GRAPHENE
  • 1.2 GRAPHENE-BASED NANOCOMPOSITES
  • 2. METAL OXIDE-GRAPHENE-BASED NANOCOMPOSITES FOR ENERGY AND ENVIRONMENT
  • 3. METAL-GRAPHENE-BASED NANOCOMPOSITES FOR ENERGY AND ENVIRONMENT
  • 4. FUTURE PROSPECTS
  • 5. CONCLUSIONS
  • REFERENCES
  • 15 - FUNCTIONALIZED GRAPHENE NANOCOMPOSITE IN GAS SENSING
  • 1. INTRODUCTION
  • 2. PRISTINE GRAPHENE: PREPARATION AND PROPERTIES
  • 2.1 HYBRIDIZATION MECHANISM FOR STRUCTURE FORMATION
  • 2.1.1 Tetravalent Carbon and Hybridization
  • 2.2 SYNTHESIS ROUTES FOR PRISTINE GRAPHENE
  • 2.2.1 Mechanical Exfoliation
  • 2.2.2 Chemical Vapor Deposition and Epitaxial Growth
  • 2.2.3 Oxidation and Reduction of Graphite
  • 2.2.4 Solvent and Surfactant-Aided Exfoliation
  • 2.3 PROPERTIES STUDY OF PRISTINE GRAPHENE
  • 3. FUNCTIONALIZATION OF GRAPHENE
  • 3.1 COVALENT FUNCTIONALIZATION OF GRAPHENE
  • 3.1.1 Nucleophilic Reaction of Graphene
  • 3.1.2 Cycloaddition Reaction of Graphene
  • 3.1.3 Condensation Reaction of Graphene
  • 3.1.4 Electrophilic Reaction of Graphene
  • 3.2 NONCOVALENT FUNCTIONALIZATION OF GRAPHENE
  • 4. TRENDS AND FUTURE APPLICATIONS
  • 5. GRAPHENE-BASED GAS SENSORS
  • 5.1 GENESIS OF THE CONCEPT
  • 5.2 THEORETICAL ASPECTS
  • 5.2.1 Gas Adsorption on Pristine Graphene
  • 5.2.2 Gas Adsorption of Functionalized Graphene Nanocomposite
  • 5.3 EXPERIMENTAL ASPECTS
  • 5.3.1 Pristine Graphene-Based Gas Sensors
  • 5.3.2 Functionalized Graphene Nanocomposite-Based Gas Sensors
  • 6. OUTCOMES AND CONCLUSIVE ASPECT
  • REFERENCES
  • 16 - HYBRIDIZED GRAPHENE FOR CHEMICAL SENSING
  • 1. INTRODUCTION
  • 1.1 HISTORY OF GRAPHENE
  • 1.2 DEFINITION OF GRAPHENE
  • 1.3 CLASSIFICATION OF GRAPHENE FAMILY
  • 2. PROPERTIES OF GRAPHENE
  • 2.1 ELECTRONIC PROPERTIES OF GRAPHENE
  • 2.2 MECHANICAL PROPERTIES
  • 2.3 QUANTUM HALL EFFECT
  • 3. SYNTHESIS OF GRAPHENE
  • 3.1 MECHANICAL EXFOLIATION OF GRAPHITE
  • 3.2 LIQUID-PHASE EXFOLIATION OF GRAPHITE
  • 3.3 EPITAXIAL GROWTH
  • 3.4 CHEMICAL SYNTHESIS
  • 4. GRAPHENE FOR CHEMICAL SENSING
  • 4.1 GRAPHENE NANOCOMPOSITE-BASED SENSORS
  • 4.2 FUNCTIONALIZED GRAPHENE-BASED SENSORS
  • 5. CONCLUSIONS AND FUTURE PROSPECTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • X
  • Y
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

208,25 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen