Self-Healing Smart Materials

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 26. April 2021
  • |
  • 560 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-71023-3 (ISBN)
 
This comprehensive book describes the design, synthesis, mechanisms, characterization, fundamental properties, functions and development of self-healing smart materials and their composites with their allied applications. It covers cementitious concrete composites, bleeding composites, elastomers, tires, membranes, and composites in energy storage, coatings, shape-memory, aerospace and robotic applications. The 21 chapters are written by researchers from a variety of disciplines and backgrounds.
1. Auflage
  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 87,84 MB
978-1-119-71023-3 (9781119710233)
weitere Ausgaben werden ermittelt
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.

Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.

Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.

Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.
  • Cover
  • Half-Title Page
  • Series Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • 1 Self-Healing Polymer Coatings
  • 1.1 Introduction
  • 1.2 Extrinsic Self-Healing Polymer Coatings
  • 1.3 Intrinsic Self-Healing Polymer Coatings
  • 1.4 Remote Activation of Self-Healing
  • 1.5 Perspectives and Challenges
  • References
  • 2 Smart Phenolics for Self-Healing and Shape Memory Applications
  • 2.1 Introduction
  • 2.2 Self-Healable Polybenzoxazines
  • 2.3 Benzoxazine Resins for Shape Memory Applications
  • 2.4 Conclusion
  • References
  • 3 Self-Healable Elastomers
  • 3.1 Introduction
  • 3.2 Self-Healing in Elastomers
  • 3.2.1 Self-Healing Mechanism
  • 3.2.2 Characterization of Healing Process
  • 3.3 Particular Cases in Different Elastomers
  • 3.3.1 Natural Rubber (NR)
  • 3.3.2 Styrene Butadiene Rubber (SBR)
  • 3.3.3 Polybutadiene Rubber
  • 3.3.4 Bromobutyl Rubber
  • 3.3.5 Silicones
  • 3.3.6 Polyurethanes
  • References
  • 4 Self-Healable Tires
  • 4.1 Introduction
  • 4.2 Self-Healable Rubber
  • 4.3 Promising Strategy for Self-Healing Rubber-Based Material
  • 4.4 Conclusion
  • References
  • 5 Self-Healing Bacterial Cementitious Composites
  • 5.1 Introduction
  • 5.2 Biomineralization for Self-Healing
  • 5.2.1 Bacteria as Self-Healing Agent
  • 5.2.2 Bacterial Metabolic Pathway in Self-Healing
  • 5.3 Strategies to Enhance the Performance of Bacterial Self-Healing
  • 5.4 Evaluation of Factors Affecting Bacterial Self-Healing
  • 5.4.1 Nutrient Suitability for Optimal Bacterial Growth
  • 5.4.2 Viability and Activity of Encapsulated Spores
  • 5.4.3 Evaluation of Encapsulation Material
  • 5.4.4 Crack Healing Efficiency
  • 5.4.5 Effects of Capsule Material and Bacteria on Concrete Properties
  • 5.5 Conclusion, Future Prospective & Challenges
  • References
  • 6 Self-Healable Solar Cells: Recent Insights and Challenges
  • 6.1 Introduction
  • 6.2 Functional Mechanism of Protection Approaches
  • 6.2.1 Self-Healable Polymeric Structure
  • 6.2.2 Shape Memory Polymeric Structure
  • 6.2.3 Self-Cleanable Polymeric Platforms
  • 6.3 Advanced Self-Healable Polymeric Materials
  • 6.3.1 Self-Healable Polymers
  • 6.3.2 Self-Healable Hydrogels
  • 6.4 Shape Memory Materials
  • 6.5 Self-Healable Solar Cells
  • 6.6 Conclusions
  • References
  • 7 Self-Healable Core-Shell Nanofibers
  • 7.1 Introduction
  • 7.2 Self-Healing Polymers in Fabrication of Core-Shell Nanofibers
  • 7.3 Strategies for Core-Shell Nanofibers Fabrication
  • 7.3.1 Capsule-Based Self-Healing
  • 7.3.2 Vascular-Based Self-Healing
  • 7.4 Methods of Fabrication of Self-Healing Core-Shell Nanofibers
  • 7.4.1 Co-Electrospinning
  • 7.4.2 Emulsion Electrospinning
  • 7.4.3 Solution-Blown
  • 7.5 Self-Healing in Laminated Composite
  • 7.6 Beneficial Self-Repairing Systems on Basis of Core-Shell Nanofibers
  • 7.7 Conclusion
  • References
  • 8 Intrinsic Self-Healing Materials
  • 8.1 Introduction
  • 8.2 Inverse Reactions and Chain Recombination
  • 8.3 Reversible (Covalent) Bonds
  • 8.3.1 Cycloadditions
  • 8.3.2 Reversible Acylhydrazones
  • 8.3.3 Disulfides
  • 8.3.4 Alkoxyamines (Radicals)
  • 8.3.5 Transesterification
  • 8.4 Supramolecular Interactions
  • 8.4.1 Hydrogen Bonds
  • 8.4.2 p-p Interaction
  • 8.4.3 Ionomers (Ballistic Stimulus)
  • 8.4.4 Metallopolymers
  • 8.5 Conclusion
  • References
  • 9 Self-Healable Catalysis
  • 9.1 Introduction
  • 9.2 Self-Healable Catalysis Applications
  • 9.2.1 Oxygen Evolution Catalysts
  • 9.2.2 Specific Catalysis Applications of Self-Healing Property
  • 9.3 Conclusion
  • References
  • 10 Self-Healing Materials in Corrosion Protection
  • 10.1 Introduction
  • 10.2 Self-Healing Definition
  • 10.3 Inhibition of the Corroded Regions Thanks to the Presence of Corrosion Inhibitive Pigments/Inhibitors
  • 10.4 The Imprisonment and Physical Release of the Inhibitor
  • 10.4.1 Ion-Exchange-Based Materials
  • 10.4.2 Porous-Structure and Metal Oxide Materials
  • 10.4.3 Conductive Polymers
  • 10.4.4 Fibril Materials
  • 10.4.5 Lamellar-Structure Materials
  • 10.4.6 Other Containers
  • 10.5 Healing Using Polymerizable Agents
  • 10.6 Conclusion and Outlook
  • References
  • 11 Self-Healable Conductive Materials
  • 11.1 Introduction
  • 11.2 Self-Healing Materials
  • 11.2.1 Elastomers
  • 11.2.2 Reversible Materials
  • 11.3 Self-Healing Conductive Materials
  • 11.3.1 Polymers
  • 11.3.2 Capsules
  • 11.3.3 Liquids
  • 11.3.4 Composites
  • 11.3.5 Coating
  • 11.4 Conclusion
  • References
  • 12 Self-Healable Artificial Skin
  • 12.1 Introduction
  • 12.2 Preparation and Properties of Artificial Skin
  • 12.3 Applications of Electronic Skin
  • 12.4 Conclusion
  • References
  • 13 Self-Healing Smart Composites
  • 13.1 Introduction
  • 13.2 Self-Healing Mechanisms and its Classifications
  • 13.2.1 Intrinsic Self-Repairing Materials
  • 13.2.2 Extrinsic Self-Repairing Materials
  • 13.3 Self-Healing of Thermoplastic Materials
  • 13.4 Self-Healing of Thermosetting Materials
  • 13.5 Conclusions and Future Study
  • References
  • 14 Stimuli-Responsive Self-Healable Materials
  • 14.1 Self-Healing Materials
  • 14.2 Synthesis of S-H Materials
  • 14.3 Types of S-H Materials
  • 14.4 Need for Stimuli-Responsive Shape Memory (S-RSM) Materials
  • 14.5 Stimuli-Responsive or Nonautonomous S-H Materials
  • 14.5.1 Light Stimuli-Responsive S-H Materials
  • 14.5.2 Thermal Stimuli-Responsive S-H Materials
  • 14.5.3 Chemical Stimuli-Responsive S-H Materials
  • 14.5.4 Electric/Magnetic Stimuli-Responsive S-H Materials
  • 14.5.5 Multi-Stimuli Responsive S-H Material
  • 14.6 Commercialization and Challenges
  • 14.7 Conclusions
  • References
  • 15 Mechanically-Induced Self-Healable Materials
  • 15.1 Introduction
  • 15.2 Mechanically-Induced Self-Healing Based on Gel
  • 15.3 Mechanically-Induced Self-Healing Based on Crystals
  • 15.4 Mechanically-Induced Self-Healing Based on Composites
  • 15.5 Mechanically-Induced Self-Healing for Corrosion
  • 15.5.1 Capsule-Based Self-Healing Approaches for Corrosion Protection
  • 15.5.2 Fiber-Based Self-Healing Approaches for Corrosion Protection
  • 15.6 Conclusion
  • References
  • 16 Self-Healing Materials in Robotics
  • 16.1 Introduction
  • 16.2 Chemistry of Self-Healing (S-H) Materials
  • 16.3 Working of Self-Healing (S-H) Material
  • 16.4 Application of Self-Healing Robots
  • 16.4.1 Self-Healing Electronics for Soft Robotics
  • 16.4.2 Self-Healing Electrostatic Actuators
  • 16.4.3 Self-Healing Skin for Robotics
  • 16.5 Approaches to Self-Healing
  • 16.6 Material Application and Damage Resilience Mechanism
  • 16.7 Conclusion
  • References
  • 17 Self-Healing Materials in Aerospace Applications
  • 17.1 Introduction
  • 17.2 Classification of Self-Healing Materials
  • 17.2.1 Intrinsic Mechanism
  • 17.2.2 Extrinsic Mechanism
  • 17.3 Self-Healing Materials in Aerospace Applications
  • 17.3.1 Fiber Reinforced Polymers
  • 17.3.2 Modified Epoxy
  • 17.3.3 Ceramic Matrix Composites
  • 17.4 Conclusion
  • References
  • 18 Bio-Inspired Self-Healable Materials
  • 18.1 Introduction
  • 18.1.1 Self-Healable Materials and Coatings
  • 18.1.2 Mechanism of Self-Healing Materials
  • 18.2 Repairing and Healing the Damage
  • 18.3 A Systematic Biomimetic Approach
  • 18.4 Self-Healable Materials: Case Studies
  • 18.4.1 Regrowth of Limbs
  • 18.4.2 The Mechanism of Bone Healing
  • 18.4.3 Cutaneous Wound Healing
  • 18.5 Applications of Bio-Inspired Self-Healable Materials-Examples
  • 18.5.1 Bio-Inspired Ionic Skin for Pressure Sensing
  • 18.5.2 Self-Healable Synthetic Vascular Materials Concerning Internal Damage
  • 18.5.3 Biobased Self-Healable Color Hydrogel
  • 18.5.4 Bio-Inspired Support for Repairing Damaged Articular Cartilage
  • 18.6 Conclusions and Outlook
  • References
  • 19 Self-Healable Batteries
  • 19.1 Introduction
  • 19.2 Development of Self-Healing Materials
  • 19.3 Self-Healing Batteries
  • 19.3.1 Self-Healable Electrodes
  • 19.3.2 Self-Healable Electrolytes
  • 19.4 Conclusions
  • References
  • 20 Self-Healing in Bleeding Composites
  • 20.1 Introduction
  • 20.2 Intrinsic and Extrinsic Self-Healing Materials and Their Repairing Approaches
  • 20.3 Strategies of Self-Healing in Engineered Materials
  • 20.3.1 Materials With Bioinspired Self-Healing Mechanism
  • 20.3.2 Self-Healing in Composite Materials Based on Biomimetic Approaches
  • 20.3.3 Vascular Networks
  • 20.4 Healing Agents, Comparison With Biological Phenomenon and Bleeding Mechanism in Self-Healing Composite Materials
  • 20.4.1 Compartmentalization, Recovery After Yield and Reinforce Repair
  • 20.5 Advantages and Disadvantages of Self-Repairing Bleeding Composite Materials
  • 20.6 Conclusion
  • References
  • 21 Self-Healing Polymers
  • 21.1 Introduction
  • 21.2 General Overview on Self-Healing Materials
  • 21.3 Design of Self-Healing
  • 21.3.1 Modes of Action of Self-Healing
  • 21.3.2 Rearrangement of Surface Dynamics
  • 21.3.3 Bringing the Surfaces Together
  • 21.3.4 Wetness
  • 21.3.5 Diffusion
  • 21.4 Application of Self-Healing Materials
  • 21.4.1 Properties of Self-Healing
  • 21.4.2 Advancement in Self-Healing
  • 21.4.3 Classification of Self-Healing
  • 21.4.4 Healing Mechanism Types of Healing
  • 21.5 Specific Examples of Self-Healing Polymer
  • 21.5.1 Intrinsic Self-Healing
  • 21.5.2 Extrinsic Self-Healing
  • 21.5.3 One Capsule System
  • 21.5.4 Self-Healing Based on Ring Opening Metathesis Polymerization
  • 21.5.5 Solvent-Induced Self-Healing
  • 21.5.6 Dual-Capsule Systems
  • 21.6 Conclusion and Recommendations
  • References
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

173,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen