Elementary Particle Physics

The Standard Theory
 
 
Oxford University Press
  • erscheint ca. am 25. Oktober 2021
  • |
  • 608 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-19-265816-6 (ISBN)
 
Since the development of natural philosophy in Ancient Greece, scientists have been concerned with determining the nature of matter's smallest constituents and the interactions among them. This textbook examines the question of the microscopic composition of matter through an accessible introduction to what is now called 'The Physics of Elementary Particles'. In the last few decades, elementary particle physics has undergone a period of transition, culminating in the formulation of a new theoretical scheme, known as 'The Standard Model', which has profoundly changed our understanding of nature's fundamental forces. Rooted in the experimental tradition, this new vision is based on geometry and sees the composition of matter in terms of its accordance with certain geometrical principles. This textbook presents and explains this modern viewpoint to a readership of well-motivated undergraduate students, by guiding the reader from the basics to the more advanced concepts of Gauge Symmetry, Quantum Field Theory and the phenomenon of spontaneous symmetry breaking through concrete physical examples. This engaging introduction to the theoretical advances and experimental discoveries of the last decades makes this fascinating subject accessible to undergraduate students and aims at motivating them to study it further.
  • Englisch
  • Oxford
  • |
  • Großbritannien
978-0-19-265816-6 (9780192658166)
weitere Ausgaben werden ermittelt
John Iliopoulos is a Director of Research Emeritus at the École Normale Supérieure in Paris. He has taught on many introductory courses in Theoretical Physics, including Quantum Field Theory and the Theory of Elementary Particles, at the École Normale Supérieure and the École Polytechnique as well as in various Schools and Universities. In 1970, in collaboration with Sheldon Glashow and Luciano Maiani, he predicted the existence of the charm quark and proposed the GIM mechanism, an important step in the construction of the Standard Model. He also contributed to the development of supersymmetry, with Bruno Zumino and Pierre Fayet. He has received many awards, including the Ricard Prize of the French Physical Society, the Sakurai Prize of the American Physical Society, the High Energy Physics Prize of the European Physical Society and the Dirac Medal. Following his PhD at Harvard University, Theodore Tomaras worked as research associate at CalTech and junior faculty at Rockefeller University, before joining the University of Crete, Greece, where he is now Professor of Physics Emeritus. He has taught many undergraduate and postgraduate courses, on elementary particle physics, quantum field theory, and gravitation and cosmology. He has contributed to the study of magnetic monopoles in GUT models, to the physics beyond the Standard Model, to the study of solitons in High Energy and Condensed Matter Physics, and to astroparticle physics. He has served as Head of the Department of Physics and of the Institute of Theoretical and Computational Physics of the University of Crete for several years, and was recently honoured with the 'S. Pihorides Award for Exceptional University Teaching'.
  • Cover
  • Elementary Particle Physics
  • Copyright
  • Contents
  • 1 Introduction
  • 2 Quantisation of the Electromagnetic Field and Spontaneous Photon Emission
  • 2.1 Introduction
  • 2.2 The Principle of Canonical Quantisation
  • 2.3 The Quantum Theory of Radiation
  • 2.3.1 Maxwell's theory as a classical field theory
  • 2.3.2 Quantum theory of the free electromagnetic field-photons
  • 2.4 Interaction of Atoms and Radiation
  • 2.4.1 The Hamiltonian
  • 2.4.2 Elements of perturbation theory
  • 2.4.3 The transition probability
  • 2.4.4 Application to the problem of spontaneous emission
  • 2.5 Problems
  • 3 Elements of Classical Field Theory
  • 3.1 Introduction
  • 3.2 Lagrangian and Hamiltonian Mechanics
  • 3.3 Classical Field Theory
  • 3.4 Problems
  • 4 Scattering in Classical and Quantum Physics
  • 4.1 Introduction
  • 4.2 The Scattering Cross Section
  • 4.3 Collisions in Non-Relativistic Quantum Mechanics
  • 4.3.1 The range and the strength of the interactions
  • 4.3.2 Potential scattering
  • 4.4 Problems
  • 5 Elements of Group Theory
  • 5.1 Introduction
  • 5.2 Groups and Representations
  • 5.3 Lie Groups
  • 5.4 Lie Algebras
  • 5.5 Examples of Lie Groups and their Algebras
  • 5.5.1 The group U(1)
  • 5.5.2 The group SU(2)
  • 5.5.3 The group O(3)
  • 5.5.4 The group SU(3)
  • 5.6 The Lorentz and Poincaré Groups
  • 5.6.1 The Lorentz group
  • 5.6.2 The Poincaré group
  • 5.7 The Space of Physical States
  • 5.7.1 Introduction
  • 5.7.2 Particle states
  • 5.7.3 The Fock space
  • 5.7.4 Action of internal symmetry transformations on F
  • 5.7.5 Action of Poincaré transformations on F
  • 5.8 Problems
  • 6 Particle Physics Phenomenology
  • 6.1 Introduction
  • 6.2 Rutherford and the Atomic Nucleus
  • 6.3 ß-Decay and the Neutrino
  • 6.4 1932: The First Table of Elementary Particles
  • 6.4.1 Everything is simple
  • 6.4.2 Conservation laws - baryon and lepton number
  • 6.4.3 The four fundamental interactions
  • 6.5 Heisenberg and the Symmetries of Nuclear Forces
  • 6.6 Fermi and the Weak Interactions
  • 6.7 The Muon and the Pion
  • 6.8 From Cosmic Rays to Particle Accelerators
  • 6.8.1 Introduction
  • 6.8.2 Electrostatic accelerators
  • 6.8.3 Linear accelerators
  • 6.8.4 Cyclotrons
  • 6.8.5 Colliders
  • 6.9 The Detectors
  • 6.9.1 Introduction
  • 6.9.2 Bubble chambers
  • 6.9.3 Counters
  • 6.10 New Elementary Particles and New Quantum Numbers
  • 6.10.1 Unstable particles
  • 6.10.2 Resonances
  • 6.10.3 SU(2) as a classification group for hadrons
  • 6.10.4 Strange particles
  • 6.11 The Eightfold Way and the Quarks
  • 6.11.1 From SU(2) to SU(3)
  • 6.11.2 The arrival of the quarks
  • 6.11.3 The breaking of SU(3)
  • 6.11.4 Colour
  • 6.12 The Present Table of Elementary Particles
  • 6.13 Problems
  • 7 Relativistic Wave Equations
  • 7.1 Introduction
  • 7.2 The Klein-Gordon Equation
  • 7.2.1 The Green's functions
  • 7.2.2 Generalisations
  • 7.3 The Dirac Equation
  • 7.3.1 Introduction
  • 7.3.2 Weyl and Majorana equations
  • 7.3.3 The Dirac equation
  • 7.3.4 The ? matrices
  • 7.3.5 The conjugate equation
  • 7.3.6 The standard representation
  • 7.3.7 Lagrangian, Hamiltonian and Green functions
  • 7.3.8 The plane wave solutions
  • 7.4 Relativistic Equations for Vector Fields
  • 7.4.1 The Maxwell field
  • 7.4.2 Massive spin-1 field
  • 7.4.3 Plane wave solutions
  • 7.5 Problems
  • 8 Towards a Relativistic Quantum Mechanics
  • 8.1 Introduction
  • 8.2 The Klein-Gordon Equation
  • 8.3 The Dirac Equation
  • 8.3.1 Introduction
  • 8.3.2 The conserved current
  • 8.3.3 The coupling with the electromagnetic field
  • 8.3.4 The non-relativistic limit of the Dirac equation
  • 8.3.5 Negative energy solutions
  • 8.3.6 Charge conjugation
  • 8.3.7 CPT symmetry
  • 8.3.8 Chirality
  • 8.3.9 Hydrogenoid systems
  • 8.4 Problems
  • 9 From Classical to Quantum Mechanics
  • 9.1 Introduction
  • 9.2 Quantum Mechanics and Path Integrals
  • 9.2.1 The Feynman postulate
  • 9.2.2 Recovering quantum mechanics
  • 9.3 Problems
  • 10 From Classical to QuantumFields. Free Fields
  • 10.1 Introduction
  • 10.2 The Klein-Gordon Field
  • 10.2.1 The canonical quantisation
  • 10.2.2 The path integral quantisation
  • 10.3 The Dirac Field
  • 10.3.1 The canonical quantisation
  • 10.3.2 The path integral quantisation
  • 10.4 The Maxwell Field
  • 10.4.1 The canonical quantisation
  • 10.4.2 The path integral quantisation
  • 10.5 Massive Spin-1 Fields
  • 10.6 Problems
  • 11 Interacting Fields
  • 11.1 Introduction - The Axioms of Quantum Field Theory
  • 11.2 General Results: Invariance under CPT and the Spin-Statistics Theorem
  • 11.2.1 The CPT theorem
  • 11.2.2 The spin-statistics theorem
  • 11.3 Examples of Interacting Theories
  • 11.4 Interacting Quantum Field Theories
  • 11.5 The Perturbation Expansion
  • 11.5.1 The configuration space Feynman rules
  • 11.5.2 The momentum space Feynman rules
  • 11.5.3 Feynman rules for quantum electrodynamics
  • 11.5.4 Feynman rules for other theories
  • 11.6 Problems
  • 12 Scattering in Quantum Field Theory
  • 12.1 The Asymptotic Theory
  • 12.1.1 The asymptotic states
  • 12.1.2 The asymptotic fields
  • 12.2 The Reduction Formula
  • 12.3 The Feynman Rules for the Scattering Amplitude
  • 12.3.1 One scalar field
  • 12.3.2 Quantum electrodynamics
  • 12.4 The Transition Probability
  • 12.4.1 The cross section
  • 12.4.2 The decay rate
  • 12.5 Examples
  • 12.5.1 The electron Compton scattering
  • 12.5.2 The electron-positron annihilation into a muon pair
  • 12.5.3 The charged pion decay rate
  • 12.6 Problems
  • 13 Gauge Interactions
  • 13.1 The Abelian Case
  • 13.2 Non-Abelian Gauge Invariance and Yang-Mills Theories
  • 13.2.1 Quantisation of Yang-Mills theories
  • 13.2.2 Feynman rules for Yang-Mills theories
  • 13.3 Gauge Theories on a Space-Time Lattice
  • 13.4 Brief Historical Notes
  • 13.5 Problems
  • 14 Spontaneously Broken Symmetries
  • 14.1 Introduction
  • 14.2 Global Symmetries
  • 14.2.1 Simple examples
  • 14.2.2 A field theory model
  • 14.2.3 Goldstone theorem
  • 14.3 Gauge Symmetries
  • 14.3.1 The Abelian model
  • 14.3.2 The non-Abelian case
  • 14.4 Problems
  • 15 The Principles of Renormalisation
  • 15.1 The Need for Renormalisation
  • 15.2 The Theory of Renormalisation
  • 15.2.1 The power counting
  • 15.2.2 Regularisation
  • 15.2.3 Renormalisation
  • 15.3 The Renormalisation Group
  • 15.3.1 Renormalisation group in dimensional regularisation
  • 15.4 Problems
  • 16 The Electromagnetic Interactions
  • 16.1 Introduction
  • 16.2 Quantum Electrodynamics
  • 16.3 Problems
  • 17 Infrared Effects
  • 17.1 Introduction
  • 17.2 Examples of Infrared Divergent Terms in Perturbation Theory
  • 17.3 Infrared Phenomena in QED
  • 17.3.1 Tree-level (O(a2)) electron Coulomb scattering
  • 17.3.2 One-loop corrections to the electron Coulomb scattering
  • 17.3.3 Infrared divergence of the photon emission amplitude
  • 17.3.4 The O(a3) measured cross section is infrared finite
  • 17.4 The Summation to All Orders
  • 17.5 The QED Asymptotic Theory Revisited
  • 17.5.1 The Faddeev-Kulish dressed electron states
  • 17.5.2 Coulomb scattering of a dressed electron
  • 17.6 Problems
  • 18 The Weak Interactions
  • 18.1 Introduction
  • 18.2 The Fermi Theory
  • 18.3 Parity Violation
  • 18.4 Vector vs Scalar: The Neutrino Helicity
  • 18.5 The V-A Theory
  • 18.6 Leptonic Interactions
  • 18.6.1 Muon decay
  • 18.6.2 Other purely leptonic weak processes
  • 18.7 Semi-Leptonic Interactions
  • 18.7.1 Strangeness conserving semi-leptonic weak interactions
  • 18.7.2 Strangeness violating semi-leptonic weak interactions
  • 18.8 Purely Hadronic Weak Interactions
  • 18.9 The Intermediate Vector Boson (IVB) Hypothesis
  • 18.10 Charged and Neutral Currents
  • 18.11 CP Violation
  • 18.12 Problems
  • 19 A Gauge Theory for the Weak and Electromagnetic Interactions
  • 19.1 Introduction
  • 19.2 The Rules of Model Building
  • 19.3 The Lepton World
  • 19.4 Extension to Hadrons
  • 19.5 Problems
  • 20 Neutrino Physics
  • 20.1 A Blessing and a Curse
  • 20.1.1 The first neutrino beams
  • 20.1.2 Gargamelle and the neutral currents
  • 20.1.3 Very high energy neutrino beams
  • 20.2 Neutrino Masses and Oscillations
  • 20.2.1 Introduction
  • 20.2.2 Experimental evidence for neutrino oscillations
  • 20.2.3 The neutrino mass matrix
  • 20.2.4 Neutrinoless double ß decay
  • 20.3 Problems
  • 21 The Strong Interactions
  • 21.1 Strong Interactions are Complicated
  • 21.2 Strong Interactions are Simple
  • 21.3 Asymptotic Freedom
  • 21.4 Quantum Chromodynamics
  • 21.4.1 Quantum chromodynamics in perturbation theory
  • 21.4.2 Quantum chromodynamics and hadronic physics
  • 21.5 Problems
  • 22 The Standard Model and Experiment
  • 22.1 A Unified Picture
  • 22.2 Classic Experiments
  • 22.2.1 Experimental discovery of charmed particles
  • 22.2.2 Stochastic cooling and the discovery of W± and Z
  • 22.2.3 The discovery of the heavy quarks and of the Brout-Englert-Higgs boson
  • 22.3 Hadron Spectroscopy
  • 22.4 The Cabibbo-Kobayashi-Maskawa Matrix and CP Violation
  • 22.4.1 The matrix elements
  • 22.4.2 Unitarity
  • 22.4.3 CP violation
  • 22.5 The Neutrino Matrix and CP Violation
  • 22.6 Questions of Flavour
  • 22.6.1 A brief history of flavour
  • 22.6.2 Rare flavour decays
  • 22.7 An Overall Fit
  • 22.8 Problems
  • 23 Beyond the Standard Model
  • 23.1 Many Questions
  • 23.2 Beyond, but How?
  • 23.2.1 Grand unified theories (GUTs)
  • 23.2.2 The trial of scalars
  • 23.2.3 Supersymmetry, or the defence of scalars
  • 23.3 Closing Remarks
  • Appendix A A Collection of Useful Formulae
  • A.1 Units and Notations
  • A.2 Free Fields
  • A.3 Feynman Rules for Scattering Amplitudes
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

38,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen