Fundamentals of Data Communication Networks

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. November 2017
  • |
  • 336 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-43623-2 (ISBN)
 

What every electrical engineering student and technical professional needs to know about data exchange across networks

While most electrical engineering students learn how the individual components that make up data communication technologies work, they rarely learn how the parts work together in complete data communication networks. In part, this is due to the fact that until now there have been no texts on data communication networking written for undergraduate electrical engineering students. Based on the author's years of classroom experience, Fundamentals of Data Communication Networks fills that gap in the pedagogical literature, providing readers with a much-needed overview of all relevant aspects of data communication networking, addressed from the perspective of the various technologies involved.

The demand for information exchange in networks continues to grow at a staggering rate, and that demand will continue to mount exponentially as the number of interconnected IoT-enabled devices grows to an expected twenty-six billion by the year 2020. Never has it been more urgent for engineering students to understand the fundamental science and technology behind data communication, and this book, the first of its kind, gives them that understanding. To achieve this goal, the book:

  • Combines signal theory, data protocols, and wireless networking concepts into one text
  • Explores the full range of issues that affect common processes such as media downloads and online games
  • Addresses services for the network layer, the transport layer, and the application layer
  • Investigates multiple access schemes and local area networks with coverage of services for the physical layer and the data link layer
  • Describes mobile communication networks and critical issues in network security
  • Includes problem sets in each chapter to test and fine-tune readers' understanding

Fundamentals of Data Communication Networks is a must-read for advanced undergraduates and graduate students in electrical and computer engineering. It is also a valuable working resource for researchers, electrical engineers, and technical professionals.



OLIVER C. IBE, ScD, is a Professor of Electrical Engineering and the Associate Dean of Engineering for Undergraduate Studies at the University of Massachusetts, Lowell, Massachusetts, USA. He has sixteen years of experience in the telecommunication industry including stints as Chief Technology Officer and cofounder of Sineria Networks, and the Director of Network Architecture at both Spike Broadband Systems and Adaptive Broadband Corporation. Dr. Ibe has published numerous books on the subjects of telecommunication technologies and applied probability.

  • Englisch
  • Newark
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 7,54 MB
978-1-119-43623-2 (9781119436232)
1119436230 (1119436230)
weitere Ausgaben werden ermittelt
OLIVER C. IBE, ScD, is a Professor of Electrical Engineering and the Associate Dean of Engineering for Undergraduate Studies at the University of Massachusetts, Lowell, Massachusetts, USA. He has sixteen years of experience in the telecommunication industry including stints as Chief Technology Officer and cofounder of Sineria Networks, and the Director of Network Architecture at both Spike Broadband Systems and Adaptive Broadband Corporation. Dr. Ibe has published numerous books on the subjects of telecommunication technologies and applied probability.
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1 Overview of Data Communication Networks
  • 1.1 Introduction
  • 1.2 Data Communication Network Model
  • 1.3 Classification of Data Communication Networks
  • 1.3.1 Transmission Method
  • 1.3.2 Data Flow Direction
  • 1.3.3 Network Topology
  • 1.3.4 Geographical Coverage
  • 1.3.5 Transmission Medium
  • 1.3.6 Data Transfer Technique
  • 1.3.7 Network Access Technique
  • 1.3.8 Media Sharing Technique
  • 1.4 Data Network Architecture
  • 1.4.1 The OSI Protocol Reference Model
  • 1.4.2 The Internet Architecture
  • 1.5 Summary
  • Chapter 2 Physical Layer
  • 2.1 Introduction
  • 2.2 Classification of Signals
  • 2.3 Periodic Signals
  • 2.4 Fourier Analysis of Periodic Signals
  • 2.4.1 Reconstructing a Function from its Fourier Series
  • 2.4.2 Fourier Analysis of Even and Odd Functions
  • 2.4.3 Parseval's Theorem
  • 2.4.4 Complex Form of Fourier Series
  • 2.5 Fourier Transform of Nonperiodic Signals
  • 2.6 Filters
  • 2.7 Line Coding
  • 2.8 Modulation
  • 2.8.1 Trigonometric Refresher Course
  • 2.8.2 Amplitude Modulation
  • 2.8.2.1 Overmodulation and Distortion
  • 2.8.2.2 Single-Sideband Suppressed-Carrier Amplitude Modulation
  • 2.8.3 Frequency Modulation
  • 2.8.4 Phase Modulation
  • 2.9 Sampling Theorem
  • 2.9.1 Analyzing Impulse Train Sampling
  • 2.9.2 Reconstruction of the Continuous-Time Signal
  • 2.9.3 Statement of the Sampling Theorem
  • 2.9.4 Proof of the Sampling Theorem
  • 2.10 Analog-to-Digital Conversion: From PAM to PCM
  • 2.10.1 Pulse Code Modulation
  • 2.10.2 Quantization Noise
  • 2.11 Basic Digital Modulation Schemes
  • 2.11.1 Amplitude-Shift Keying
  • 2.11.2 Frequency-Shift Keying
  • 2.11.3 Phase-Shift Keying
  • 2.12 Media Sharing Schemes
  • 2.12.1 Frequency Division Multiplexing
  • 2.12.1.1 Wavelength Division Multiplexing
  • 2.12.2 Time Division Multiplexing
  • 2.12.2.1 Synchronous Versus Asynchronous TDM
  • 2.13 Modems
  • 2.14 Transmission Media
  • 2.14.1 Twisted Pair
  • 2.14.2 Coaxial Cable
  • 2.14.3 Optical Fiber
  • 2.14.3.1 Fiber Modes
  • 2.14.4 Wireless Medium
  • 2.15 Channel Impairments
  • 2.15.1 Attenuation
  • 2.15.2 Noise
  • 2.15.2.1 Concept of Decibel
  • 2.15.2.2 Signal-to-Noise Ratio
  • 2.15.3 Distortion
  • 2.15.4 Equalization
  • 2.16 Summary
  • Chapter 3 Data Link Layer Protocols
  • 3.1 Introduction
  • 3.2 Framing
  • 3.3 Bit Stuffing
  • 3.4 Flow Control
  • 3.4.1 The Stop-and-Wait Protocol
  • 3.4.2 The Sliding Window Flow Control
  • 3.5 Error Detection
  • 3.5.1 Parity Checking
  • 3.5.2 Two-Dimensional Parity
  • 3.5.3 Cyclic Redundancy Checking
  • 3.6 Error Control Protocols
  • 3.6.1 Stop-and-Wait ARQ
  • 3.6.2 Go-Back-N ARQ
  • 3.6.3 Selective Repeat ARQ
  • 3.7 Data Link Control Protocols
  • 3.7.1 High-level Data Link Control
  • 3.7.1.1 HDLC Frame Format
  • 3.7.1.2 Control Field Format
  • 3.7.2 Point-to-Point Protocol
  • 3.7.2.1 PPP Components
  • 3.7.2.2 PPP Frame Format
  • 3.7.2.3 PPP Link Control
  • 3.8 Summary
  • Chapter 4 Multiple Access Schemes
  • 4.1 Introduction
  • 4.2 Multiplexing Schemes Revisited
  • 4.2.1 FDM
  • 4.2.2 TDM
  • 4.2.3 CDM
  • 4.3 Orthogonal Access Schemes
  • 4.3.1 FDMA
  • 4.3.2 TDMA
  • 4.3.3 CDMA
  • 4.4 Controlled Access Schemes
  • 4.4.1 Centralized Polling
  • 4.4.2 Token Passing
  • 4.4.3 Service Policies
  • 4.5 Random Access Schemes
  • 4.5.1 Aloha System
  • 4.5.2 Slotted Aloha
  • 4.5.3 CSMA
  • 4.5.4 CSMA/CD
  • 4.5.4.1 Why Listen While Transmitting in CSMA/CD
  • 4.5.5 CSMA/CA
  • 4.6 Summary
  • Chapter 5 Local Area Networks
  • 5.1 Introduction
  • 5.2 Ethernet
  • 5.2.1 Ethernet Frame Structure
  • 5.2.2 IEEE 802.3 LAN Types
  • 5.2.3 Ethernet Topologies
  • 5.2.4 LAN Switching
  • 5.2.5 Classification of Ethernet Switching
  • 5.2.6 Frame Forwarding Methods
  • 5.2.6.1 Store-and-Forward Switching
  • 5.2.6.2 Cut-Through Switching
  • 5.2.6.3 Fragment-Free Switching
  • 5.2.7 Highest Layer used for Forwarding
  • 5.2.7.1 Layer 2 Switching
  • 5.2.7.2 Layer 3 Switching
  • 5.2.7.3 Layer 4 Switching
  • 5.3 Virtual LANs
  • 5.3.1 Advantages of VLANs
  • 5.3.2 Types of VLANs
  • 5.3.2.1 Port-Based VLAN
  • 5.3.2.2 MAC Address-Based VLAN
  • 5.3.2.3 Protocol-Based VLANs
  • 5.3.3 VLAN Tagging
  • 5.3.4 Comments
  • 5.4 Gigabit Ethernet
  • 5.4.1 Frame Bursting
  • 5.5 Wireless LANs
  • 5.5.1 IEEE 802.11b WLAN
  • 5.5.2 IEEE 802.11a WLAN
  • 5.5.3 IEEE 802.11g WLAN
  • 5.5.4 Architecture of the IEEE 802.11 WLAN
  • 5.5.5 Ad Hoc Mode Deployment
  • 5.5.6 Infrastructure Mode Deployment
  • 5.5.7 IEEE 802.11 WLAN Timers
  • 5.5.8 IEEE 802.11 WLAN Operation
  • 5.5.9 DCF Mechanism
  • 5.5.10 PCF Mechanism
  • 5.5.11 Range and Data Rate Comparison in the PCF Environment
  • 5.6 Token Ring Network
  • 5.6.1 Token Frame Fields
  • 5.6.2 Token-Passing Access Method
  • 5.6.3 Data/Command Frame Fields
  • 5.6.4 Token Access Priority
  • 5.6.5 Logical and Physical Implementation
  • 5.7 Summary
  • Chapter 6 Network Layer Part I - IP Addressing
  • 6.1 Introduction
  • 6.2 IP Address
  • 6.3 Maximum Transmission Unit
  • 6.4 IP Version 4 Addressing
  • 6.4.1 Class A IPv4 Addresses
  • 6.4.2 Class B IPv4 Addresses
  • 6.4.3 Class C IPv4 Addresses
  • 6.4.4 Class D IPv4 Addresses
  • 6.4.5 Class E IPv4 Addresses
  • 6.5 IP Subnetting
  • 6.6 Variable Length Subnet Mask Networks
  • 6.7 IP Quality of Service
  • 6.8 Operation of the Explicit Congestion Notification
  • 6.9 Address Resolution Protocol
  • 6.9.1 Source and Sink in Same LAN
  • 6.9.2 Source and Sink in Different LANs: Proxy ARP
  • 6.9.3 Source and Sink in Different Remote LANs
  • 6.10 Dealing with Shortage of IPv4 Addresses
  • 6.10.1 Private Internets
  • 6.10.2 Network Address Translation
  • 6.10.3 Classless Inter-Domain Routing
  • 6.11 IPv6
  • 6.11.1 IPv6 Header
  • 6.11.2 Concept of Flexible Addressing in IPv6
  • 6.12 Summary
  • Chapter 7 Network Layer Part II - Routing
  • 7.1 Introduction
  • 7.2 Routing Principle
  • 7.3 Routing Algorithms
  • 7.4 Static Versus Dynamic Routing
  • 7.5 Link-State Versus Distance-Vector Routing
  • 7.6 Flat Versus Hierarchical Routing
  • 7.7 Host-Based Versus Router-Intelligent Routing
  • 7.8 Centralized Versus Distributed Routing
  • 7.9 Routing Metrics
  • 7.9.1 Path Length
  • 7.9.2 Reliability
  • 7.9.3 Delay
  • 7.9.4 Bandwidth
  • 7.9.5 Load
  • 7.9.6 Communication Cost
  • 7.10 Flooding Algorithm
  • 7.11 Distance-Vector Routing Algorithms
  • 7.12 Link-State Routing Algorithms
  • 7.13 Routing Protocols
  • 7.14 Routing Information Protocol
  • 7.15 Routing Information Protocol Version 2
  • 7.16 Open Shortest Path First Protocol
  • 7.16.1 OSPF Routing Hierarchy
  • 7.16.2 OSPF Routers
  • 7.16.3 OSPF Routing
  • 7.16.4 Maintaining the Topological Database
  • 7.17 Advantages of OSPF Over RIP
  • 7.18 The Dijkstra's Algorithm
  • 7.19 Multicast Routing
  • 7.20 Types of Multicast Systems
  • 7.21 Host-Router Signaling
  • 7.22 Multicast Routing Protocols
  • 7.22.1 Opt-In Protocols
  • 7.22.2 Opt-Out Protocols
  • 7.22.3 Source-Based Tree Protocols
  • 7.22.4 Shared Tree Protocols
  • 7.23 Multicast Forwarding
  • 7.24 Summary
  • Chapter 8 Transport Layer - TCP and UDP
  • 8.1 Introduction
  • 8.2 TCP Basics
  • 8.2.1 TCP Ports
  • 8.2.2 TCP Sockets
  • 8.2.3 TCP Segment Format
  • 8.3 How TCP Works
  • 8.3.1 TCP Connection Establishment
  • 8.3.2 TCP Connection Release
  • 8.3.3 TCP Connection Management
  • 8.4 TCP Flow Control
  • 8.4.1 Slow Start
  • 8.4.2 Congestion Avoidance
  • 8.4.3 Fast Retransmit
  • 8.4.4 Fast Recovery
  • 8.5 TCP and Explicit Congestion Notification
  • 8.6 The SYN Flood DoS Attach
  • 8.7 UDP
  • 8.8 Summary
  • Chapter 9 Transport Layer - SCTP and DCCP
  • 9.1 Introduction
  • 9.2 Stream Control Transmission Protocol
  • 9.2.1 Motivation for a New Transport Protocol
  • 9.2.2 Illustration of the HOL Blocking
  • 9.2.3 Summary of Features of SCTP
  • 9.2.4 SCTP Packet
  • 9.2.5 SCTP Header
  • 9.2.6 Association Establishment
  • 9.2.7 Four-Way Handshake and the SYN Flood DoS Attach
  • 9.2.8 Multihoming
  • 9.2.9 Multistreaming
  • 9.2.10 SCTP Graceful Shutdown Feature
  • 9.2.11 Selective Acknowledgments
  • 9.3 Datagram Congestion Control Protocol
  • 9.3.1 DCCP Packet Structure
  • 9.3.2 DCCP Connection
  • 9.3.3 DCCP Congestion Management
  • 9.3.3.1 CCID 2-TCP-Like Congestion Control
  • 9.3.3.2 CCID 3-TCP Friendly Rate Control
  • 9.4 Summary
  • Chapter 10 Application Layer Services
  • 10.1 Introduction
  • 10.2 Dynamic Host Configuration Protocol
  • 10.2.1 DHCP Basics
  • 10.2.2 Discovery Phase
  • 10.2.3 Offer Phase
  • 10.2.4 Request Phase
  • 10.2.5 Acknowledgment Phase
  • 10.2.6 Example of Configuration Process Timeline
  • 10.2.7 Address Lease Time
  • 10.2.8 Static Addresses
  • 10.3 Domain Name System
  • 10.3.1 Structure of the DNS
  • 10.3.2 DNS Queries
  • 10.3.3 Name-to-Address Resolution Process
  • 10.3.4 DNS Zones
  • 10.3.5 DNS Zone Updates
  • 10.3.5.1 Full Zone Transfer
  • 10.3.5.2 Incremental Zone Transfer
  • 10.3.5.3 Notify
  • 10.3.6 Dynamic Update
  • 10.3.7 Root Servers
  • 10.4 Summary
  • Chapter 11 Introduction to Mobile Communication Networks
  • 11.1 Introduction
  • 11.2 Radio Communication Basics
  • 11.3 Model of Radio Communication System
  • 11.4 Radio Wave Propagation
  • 11.4.1 Free-Space Propagation
  • 11.4.2 Reflection
  • 11.4.3 Diffraction
  • 11.4.4 Scattering
  • 11.5 Multipath Fading
  • 11.6 Introduction to Cellular Communication
  • 11.6.1 Frequency Reuse
  • 11.6.2 Cellular System Architecture
  • 11.7 Clusters and Frequency Reuse
  • 11.8 Co-Channel Interference
  • 11.9 Cell Splitting
  • 11.10 Introduction to Mobile Cellular Networks
  • 11.11 Mobile Cellular Network Architecture
  • 11.12 Mobility Management: Handoff
  • 11.12.1 Handoff Schemes
  • 11.12.2 Hard Handoff versus Soft Handoff
  • 11.13 Generations of Mobile Communication Networks
  • 11.13.1 First-Generation Networks
  • 11.13.2 Second-Generation Networks
  • 11.13.3 Introduction to the GSM Network
  • 11.13.4 GSM Channels
  • 11.13.5 Power Control
  • 11.13.6 Overview of IS-136 TDMA Networks
  • 11.13.7 Overview of IS-95 CDMA Networks
  • 11.13.8 Third-Generation Networks
  • 11.13.9 Fourth-Generation Networks
  • 11.13.10 Fifth-Generation Networks
  • 11.14 A Note on Internet-of-Things
  • 11.15 Summary
  • Chapter 12 Introduction to Network Security
  • 12.1 Introduction
  • 12.2 Types of Network Attacks
  • 12.3 Security Services
  • 12.4 Data Encryption Terminology
  • 12.5 Cryptographic Systems
  • 12.5.1 Symmetric Cryptosystems
  • 12.5.2 Public-Key Cryptosystems
  • 12.5.3 Comparing Symmetric and Public-Key Cryptosystems
  • 12.5.4 A Hybrid Encryption Scheme
  • 12.6 Technical Summary of Public-Key Cryptography
  • 12.6.1 Introduction to Number Theory
  • 12.6.2 Congruences
  • 12.6.3 The Square and Multiply Algorithm
  • 12.6.4 Euclid's Algorithm
  • 12.6.5 Extended Euclid's Algorithm
  • 12.6.6 Euler's Phi Function (Euler's Totient Function)
  • 12.6.7 The RSA Algorithm
  • 12.7 Digital Signatures
  • 12.7.1 Generating a Digital Signature
  • 12.7.2 Verifying a Digital Signature
  • 12.8 IP Security Protocols
  • 12.8.1 IPSec Modes
  • 12.8.2 Security Association
  • 12.8.3 Authentication Header
  • 12.8.4 Encapsulating Security Payload
  • 12.8.5 Key Distribution
  • 12.9 Summary
  • Bibliography
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

103,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok