Active Coatings for Smart Textiles

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 6. April 2016
  • |
  • 482 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100265-0 (ISBN)
 

Active Coatings for Smart Textiles presents the latest information on active materials and their application to textiles in the form of coatings and finishes for the purpose of improving performance and creating active functional effects. This important book provides detailed coverage of smart coating types, processes, and applications.

After an introduction to the topic, Part One introduces various types of smart and active coatings, including memory polymer coatings, durable and self-cleaning coatings, and breathable coatings. Technologies and related processes for the application of coatings to textiles is the focus of Part Two, with chapters devoted to microencapsulation technology, plasma surface treatments, and nanotechnology-based treatments.

The book ends with a section on applications of smart textiles with responsive coatings, which are increasingly finding commercial niches in sportswear, protective clothing, medical textiles, and architecture.

  • Introduces various types of smart and active coatings for textiles
  • Covers technologies and application processes for the coating and finishing of textiles
  • Reviews commercial applications of such coatings, including in sportswear, protective clothing, medical textiles and architecture


Jinlian Hu is a Professor at the Institute of Textiles and Clothing, Hong Kong Polytechnic University. A Fellow of the Textile Institute, she was also the recipient of the 2001 Award for Distinguished Achievement from the US Fiber Society. Professor Hu has published over 300 articles and several books on textile materials. She is currently the Editor-in-Chief of the Research Journal of Textiles and Apparel.
  • Englisch
  • San Diego
Elsevier Science
  • 22,93 MB
978-0-08-100265-0 (9780081002650)
0081002653 (0081002653)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Active Coatings for Smart Textiles
  • The Textile Institute and Woodhead Publishing
  • Related titles
  • Active Coatings for Smart Textiles
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Textiles
  • 1 - Introduction to active coatings for smart textiles
  • 1.1 Introduction
  • 1.2 Functions and applications of active coating
  • 1.3 Development of smart materials for active coating
  • 1.4 Development of processing technologies for active coating
  • 1.5 Outline of the book
  • References
  • One - Types of active coatings
  • 2 - Memory polymer coatings for smart textiles
  • 2.1 Introduction
  • 2.2 Memory polymers
  • 2.2.1 Structures and mechanisms of memory polymers
  • 2.2.2 Classifications of memory polymers
  • 2.3 Functions of memory coating textiles
  • 2.3.1 Smart wettability control
  • 2.3.2 Self-healing liquid repellent
  • 2.3.3 Coating for breathability
  • 2.3.4 Aesthetic surface
  • 2.4 Conclusions
  • References
  • 3 - Environmentally mild self-cleaning processes on textile surfaces under daylight irradiation: critical issues
  • 3.1 Introduction: self-cleaning of textiles by mild environmental sunlight-activated processes
  • 3.2 Pretreatment by and functionalization of surfaces by radiofrequency plasma and ultraviolet-C (184nanomoles)
  • 3.3 Coating by colloidal titanium dioxide of artificial fibers such as polyamide and polyester: evaluation of self-cleaning per ...
  • 3.3.1 Photodiscoloration/self-cleaning of polyamide, polyester, and nylon fabrics
  • 3.3.2 Surface characterization of photocatalytically modified titanium dioxide artificial textiles
  • 3.4 Coating by colloidal titanium dioxide of natural fibers: evaluation of self-cleaning performance under low-intensity solar ...
  • 3.5 Cotton self-cleaning by titanium dioxide clusters attached by chemical spacers under low-intensity solar irradiation
  • 3.6 Self-cleaning cotton textiles titanium dioxide-modified by silicon dioxide-protective layers
  • 3.7 Coatings by binary oxides and/or promoted or enhanced copper-binary oxides leading to faster stain discoloration under low- ...
  • 3.8 Trend of work in this area: future directions
  • Acknowledgments
  • References
  • 4 - Smart durable and self-healing textile coatings
  • 4.1 Introduction
  • 4.2 Types and classifications of smart coatings for improving textile durability
  • 4.2.1 Self-healing textile coatings
  • 4.2.2 Antimicrobial and antifouling coatings
  • 4.2.2.1 Metal-based antimicrobials
  • 4.2.2.2 Halogen compounds
  • 4.2.2.3 Nitrogen compounds
  • 4.2.2.4 Phenolic compounds
  • 4.2.2.5 Aldehyde compounds
  • 4.2.2.6 Bio-based products
  • 4.2.2.7 Antifouling
  • 4.2.3 Coatings to protect against ultraviolet and infrared radiation
  • 4.2.3.1 Ultraviolet
  • 4.2.3.2 Infrared
  • 4.3 Properties of textiles with durability-enhancing coatings
  • 4.3.1 Scratch resistance
  • 4.3.2 Antibacterial and antifungal properties
  • 4.3.3 Ultraviolet resistance
  • 4.3.4 Infrared reflection
  • 4.4 Applications of smart durable and self-healing textiles
  • 4.4.1 New generation of architectural fabrics
  • 4.4.2 Protective clothing
  • 4.4.3 Securing cargo
  • 4.4.3.1 The road ahead for smart lashings
  • 4.5 Future trends
  • 4.6 Conclusions
  • Sources of further information
  • Acknowledgments
  • References
  • 5 - Smart breathable coatings for textiles
  • 5.1 Introduction
  • 5.2 Working principles of smart breathable coatings
  • 5.2.1 Microporous coatings
  • 5.2.2 Hydrophilic breathable coatings and their combination with microporous membranes and coatings
  • 5.2.3 Use of retroreflective microbeads
  • 5.2.4 Temperature-responsive breathable coating
  • 5.2.4.1 Shape memory polymers
  • 5.2.4.2 Fabrics based on biomimetics
  • 5.3 Materials for breathable coating
  • 5.4 Methods of generating hydrophilic and microporous coatings
  • 5.4.1 Mechanical fibrillation
  • 5.4.2 Wet coagulation process
  • 5.4.3 Thermocoagulation
  • 5.4.4 Foam coating
  • 5.4.5 Solvent extraction
  • 5.4.6 Solubilising one component in the mixture
  • 5.4.7 Radio frequency/ion/UV or E beam radiation
  • 5.4.8 Melt-blown/hot melt technology
  • 5.4.9 Point-bonding technology
  • 5.4.10 Nanofibres
  • 5.5 Testing and evaluation of different breathable coated fabrics
  • 5.5.1 Resistance to penetration and absorption of water
  • 5.5.1.1 Simulated rain tests
  • Spray test
  • Rain test
  • Impact penetration
  • Bundesmann rain tester
  • 5.5.1.2 Penetration pressure tests
  • Hydrostatic pressure test
  • 5.5.2 Wind resistance
  • 5.5.3 Water vapour permeability
  • 5.5.3.1 Cup method
  • 5.5.3.2 Desiccant inverted cup method
  • 5.5.3.3 Sweating guarded hot plate method
  • 5.6 Applications
  • 5.7 Conclusions and future trends
  • References
  • 6 - Conductive polymer coatings
  • 6.1 Introduction
  • 6.2 Conductive polymers for textile coating
  • 6.2.1 Methods of coating
  • 6.2.1.1 Solution polymerization
  • 6.2.1.2 Continuous vapor-phase polymerization to produce conductive yarns
  • 6.2.2 Soluble conducting poly(3-alkylpyrrole) polymers
  • 6.2.3 Effect of plasma treatment on conducting polymer coatings
  • 6.3 Properties and applications of conducting polymers
  • 6.3.1 Microwave properties of conducting polymers
  • 6.3.2 Heated fabrics
  • 6.3.3 Conducting polymer actuators
  • 6.4 Conclusion
  • 6.4.1 Electrical degradation of conductive textiles and future trends
  • References
  • 7 - Natural photonic materials for textile coatings
  • 7.1 Introduction
  • 7.1.1 Typical optical process of photonic materials
  • 7.1.2 Fabrication of photonic crystals based on colloidal crystals
  • 7.1.3 Characterization of textile coatings
  • 7.2 Types and classifications of natural photonic materials (Zi et al., 2012)
  • 7.2.1 Thin-film interference
  • 7.2.2 Multilayer interference
  • 7.2.3 Biological photonic crystals
  • 7.2.4 Noniridescent colorations
  • 7.2.5 Structural color mixing
  • 7.3 Photonic structures brought to textile coating
  • 7.4 Structural-colored sensors by external stimuli
  • 7.4.1 Solvents
  • 7.4.2 Humidity
  • 7.4.3 Temperature
  • 7.4.4 Stress
  • 7.4.5 pH
  • 7.4.6 Light
  • 7.5 Summary and outlook
  • Acknowledgement
  • References
  • Two - Smart coating processes and technologies
  • 8 - Coating processes and techniques for smart textiles
  • 8.1 Introduction
  • 8.2 Substrate and coating interactions
  • 8.3 Overview of coating
  • 8.4 Traditional processes for textile coating
  • 8.5 Coating for smart textiles
  • 8.6 Future trends
  • References
  • 9 - Microencapsulation technology for smart textile coatings
  • 9.1 Introduction
  • 9.1.1 Historical background
  • 9.1.2 Definition: generalities
  • 9.1.3 Functional coating and microencapsulation
  • 9.1.4 Objective of the chapter
  • 9.2 Benefits of microencapsulation for textiles
  • 9.2.1 Protection and shelf life enhancement
  • 9.2.2 Controlled release
  • 9.2.3 Compatibility
  • 9.3 Microencapsulation technologies
  • 9.3.1 Chemical processes
  • 9.3.1.1 Interfacial polymerisation
  • 9.3.1.2 In situ polymerisation
  • 9.3.1.3 Suspension polymerisation
  • 9.3.2 Physicochemical processes
  • 9.3.2.1 Phase coacervation
  • 9.3.2.2 Solvent evaporation
  • 9.3.3 Other microencapsulation methods
  • 9.4 Application procedures of microcapsules on textile substrate
  • 9.4.1 Conventional finishing treatment
  • 9.4.2 Chemical grafting
  • 9.4.3 Coating and laminating
  • 9.4.3.1 Coating
  • 9.4.3.2 Laminating
  • 9.4.4 Miscellaneous applications
  • 9.4.4.1 Atmospheric plasma treatment
  • 9.4.4.2 Ultraviolet curing
  • 9.4.4.3 Electrostatic interactions
  • 9.4.4.4 Double-layered shell
  • 9.5 Smart end uses of textile substrates containing microcapsules
  • 9.5.1 Thermal comfort (phase change material) and cooling effects
  • 9.5.1.1 Historical background
  • 9.5.1.2 Performance in textiles
  • 9.5.1.3 Examples of commercial applications of phase change materials
  • 9.5.1.4 Microcapsules for a cooling effect
  • 9.5.2 Protection: flame retardant
  • 9.5.2.1 Microencapsulation of flame retardant
  • 9.5.2.2 Coating with microencapsulated flame retardant
  • 9.5.3 Printing and dyeing
  • 9.5.3.1 Colour change technology
  • 9.5.3.2 Textile application of thermochromism
  • 9.5.3.3 Textile applications of photochromism
  • 9.5.4 Well-being
  • 9.5.4.1 Dermocosmetics
  • 9.5.4.2 Aromatherapy
  • 9.5.5 Insect repellent
  • 9.5.6 Antimicrobials
  • 9.6 Conclusions
  • References
  • 10 - Plasma surface treatments for smart textiles
  • 10.1 Introduction
  • 10.2 Principles of plasma creation
  • 10.2.1 Ionisation and detachment
  • 10.2.2 Recombination, detachment and diffusion
  • 10.3 Plasma-substrate interactions
  • 10.3.1 Polymerisation
  • 10.3.2 Plasma ablation (physical sputtering and chemical etching)
  • 10.3.2.1 Sputtering
  • 10.3.2.2 Chemical etching
  • 10.3.2.3 Ion-enhanced energetic etching
  • 10.3.2.4 Ion-enhanced protective etching
  • 10.3.3 Functionalisation
  • 10.4 Applications of plasma surface treatments in smart textiles
  • 10.4.1 Hydrophilicity and oleophobicity
  • 10.4.2 Environmentally responsive or stimuli-responsive materials
  • 10.4.2.1 pH responsive
  • 10.4.2.2 Temperature responsive
  • 10.4.3 Textiles for biomedical application
  • 10.4.4 Antimicrobial textiles
  • 10.4.5 Immobilisation of growth factor for therapeutics in tissue regeneration
  • 10.4.6 Antibiofouling
  • 10.4.7 Enhancing dyeability
  • 10.5 Future trends
  • 10.6 Conclusion
  • Sources of further information
  • References
  • 11 - Nanotechnology-based coating techniques for smart textiles
  • 11.1 Introduction
  • 11.2 Types and classifications of nanotechnology-based coating techniques
  • 11.2.1 Sol-gel method
  • 11.2.2 Cross-linking method
  • 11.2.3 Thin-film deposition technique
  • 11.2.3.1 Physical vapour deposition
  • 11.2.3.2 Vacuum evaporation
  • 11.2.3.3 Sputter coating
  • 11.2.3.4 Ion implantation
  • 11.3 Nanofibre coating via electrospinning
  • 11.3.1 Electrospun nanofibre coating application
  • 11.3.1.1 Solid-phase microextraction
  • 11.3.1.2 Corrosion inhibitor
  • 11.3.1.3 Sensors
  • 11.3.1.4 Membrane coatings
  • 11.3.1.5 Textile coatings
  • 11.4 Future trends
  • 11.5 Conclusion
  • References
  • 12 - Biomimetic nanocoatings for structural coloration of textiles
  • 12.1 Introduction
  • 12.2 Characterization of biomimetic structural coloration
  • 12.3 Structural colors of thin-film interference on textiles with electrostatic self-assembly
  • 12.3.1 Principle of thin-film interference
  • 12.3.1.1 Multilayer interference
  • 12.3.2 Basics of electrostatic self-assembly
  • 12.3.3 Structural colors of silica-polyethylenimine-coated surfaces
  • 12.3.3.1 Optical properties of silica-polyethylenimine-coated surfaces
  • 12.3.3.2 Generating mechanism of structural colors from silica-polyethylenimine-coated surface
  • 12.3.3.3 Self-assembly process of (silica-polyethylenimine)n film coated on polyester fabric surface
  • 12.3.3.4 Property evaluation of (silica-polyethylenimine)n-coated polyester fabrics
  • 12.4 Structural colors of photonic crystals on textiles
  • 12.4.1 The concept of photonic crystals
  • 12.4.2 Fabrication of photonic crystals
  • 12.4.3 Structural color principles of photonic crystals
  • 12.4.4 Application of photonic crystals on textile fabrics
  • 12.4.4.1 Preparation and characterization of monodisperse colloidal microspheres
  • 12.4.4.2 Self-assembly of colloidal microspheres on textile fabrics
  • 12.4.4.3 Color properties of textile fabrics with photonic crystals
  • 12.5 Conclusions and future trends
  • Acknowledgments
  • References
  • 13 - Functional modification of fiber surface via sol-gel technology
  • 13.1 Introduction
  • 13.2 Hydrophobic and oleophobic modifications
  • 13.2.1 Hydrophobic silane coupling agent hybrid sol modification
  • 13.2.2 Oleophobic modifications with silane coupling agent hybrid sol
  • 13.3 Anti-ultraviolet property using titanium dioxide hybrid sol
  • 13.3.1 Properties of hybrid sols and anti-ultraviolet property analysis
  • 13.3.2 Layer-by-layer self-assembly deposition on fiber and anti-ultraviolet property
  • 13.4 Antibacterial finishing using cationic or titanium dioxide hybrid sol
  • 13.4.1 Antibacterial cationic hybrid sol
  • 13.4.2 Antibacterial activity of metallic oxide hybrid sol
  • 13.5 Color fixation using smart silane coupling agent hybrid sol
  • 13.5.1 Sol-gel silica doped with dyes and fixation property
  • 13.5.2 Color fixation analysis of self-assembled deposition and after finishing
  • 13.6 Conclusion
  • Acknowledgments
  • References
  • Three - Applications of smart textiles with responsive coatings
  • 14 - Smart coatings for comfort in clothing
  • 14.1 Introduction
  • 14.2 Principles of comfort in textiles and clothing
  • 14.2.1 General aspects of wear comfort
  • 14.2.2 Factors of thermal comfort in clothing
  • 14.2.3 Thermal comfort ability of textile clothing
  • 14.2.4 Active versus passive thermoregulation
  • 14.3 Technologies for smart textile coatings
  • 14.3.1 Phase change materials
  • 14.3.2 Shape memory polymers
  • 14.3.3 Stimuli-responsive polymers
  • 14.4 Functions of smart textile/apparel coatings
  • 14.5 Future trends
  • 14.6 Conclusion
  • Sources of further information
  • References
  • 15 - Smart coatings for sportswear
  • 15.1 Introduction
  • 15.2 Smart coating and functional requirements of sportswear
  • 15.3 Smart coatings to enhance comfort in sportswear
  • 15.3.1 Phase changing material coating
  • 15.3.2 Shape memory polymers
  • 15.3.2.1 Temperature responsive shape memory polymers
  • 15.3.2.2 Moisture responsive shape memory polymer
  • 15.3.3 Moisture management hydrophilic coatings
  • 15.4 Smart coating to provide protection
  • 15.4.1 Protection against weather by waterproof, breathable coating
  • 15.4.2 Protection against ultraviolet radiation
  • 15.4.3 Protection against microorganisms
  • 15.5 Smart coating for performance enhancement
  • 15.5.1 Drag in sports
  • 15.5.2 Drag reduction in swimwear
  • 15.5.3 Drag reduction in skiing, cycling
  • 15.6 Smart textiles for health and motion monitoring in sportswear
  • 15.7 Conclusions
  • References
  • 16 - Smart coatings for protective clothing
  • 16.1 Introduction
  • 16.2 Smart coating for body armor application
  • 16.2.1 Bullet-resistant body armor
  • 16.2.2 Stab-resistant body armor
  • 16.3 Smart coating for hazardous material protective clothing
  • 16.4 Smart coating for health care protective clothing
  • 16.5 Smart coating for firefighter protective clothing
  • 16.6 Future trends
  • References
  • 17 - Smart medical textiles based on cyclodextrins for curative or preventive patient care
  • 17.1 Introduction
  • 17.2 Cyclodextrin production, binding properties, and applications
  • 17.2.1 Synthesis and characteristics
  • 17.2.2 Toxicological properties
  • 17.2.3 Binding properties
  • 17.2.4 Applications in free form
  • 17.2.5 Interaction with textile support
  • 17.2.6 General applications of cyclodextrins in textile industry
  • 17.3 Cyclodextrins grafted on textiles for medical purposes
  • 17.3.1 Antipathogen textiles
  • 17.3.2 Antiinflammatory textiles
  • 17.3.3 Insect repellent and insecticide textiles
  • 17.3.4 Cosmetotextiles
  • 17.3.5 Other smart opportunities
  • 17.4 Conclusion and perspectives
  • Acknowledgment
  • References
  • 18 - Smart coatings for textiles in architecture
  • 18.1 Introduction
  • 18.2 Current trends in advanced architecture and smart textiles for architectural applications
  • 18.2.1 Current trends in advanced architecture
  • 18.2.2 Current trends in smart textiles for architectural applications
  • 18.3 Current components and types of smart-coated textiles for architectural applications
  • 18.3.1 Passive and active components
  • 18.3.2 Smart-coated property-changing textiles
  • 18.3.3 Smart-coated energy-generating and exchanging textiles
  • 18.3.4 Smart-coated energy-storing textiles
  • 18.3.5 Smart-coated matter-exchanging textiles
  • 18.4 Future trends in advanced architecture and smart textiles for architectural applications
  • 18.4.1 Future trends in advanced architecture
  • 18.4.2 Future trends in smart textiles for architectural applications
  • 18.5 Applications for interior, exterior use and for actuators
  • 18.5.1 Applications for interior use
  • 18.5.2 Applications for exterior use and for actuators
  • References
  • Further reading
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

267,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok